A platform for research: civil engineering, architecture and urbanism
Seed Dispersal, Microsites or Competition—What Drives Gap Regeneration in an Old-Growth Forest? An Application of Spatial Point Process Modelling
The spatial structure of trees is a template for forest dynamics and the outcome of a variety of processes in ecosystems. Identifying the contribution and magnitude of the different drivers is an age-old task in plant ecology. Recently, the modelling of a spatial point process was used to identify factors driving the spatial distribution of trees at stand scales. Processes driving the coexistence of trees, however, frequently unfold within gaps and questions on the role of resource heterogeneity within-gaps have become central issues in community ecology. We tested the applicability of a spatial point process modelling approach for quantifying the effects of seed dispersal, within gap light environment, microsite heterogeneity, and competition on the generation of within gap spatial structure of small tree seedlings in a temperate, old growth, mixed-species forest. By fitting a non-homogeneous Neyman–Scott point process model, we could disentangle the role of seed dispersal from niche partitioning for within gap tree establishment and did not detect seed densities as a factor explaining the clustering of small trees. We found only a very weak indication for partitioning of within gap light among the three species and detected a clear niche segregation of Picea abies (L.) Karst. on nurse logs. The other two dominating species, Abies alba Mill. and Fagus sylvatica L., did not show signs of within gap segregation.
Seed Dispersal, Microsites or Competition—What Drives Gap Regeneration in an Old-Growth Forest? An Application of Spatial Point Process Modelling
The spatial structure of trees is a template for forest dynamics and the outcome of a variety of processes in ecosystems. Identifying the contribution and magnitude of the different drivers is an age-old task in plant ecology. Recently, the modelling of a spatial point process was used to identify factors driving the spatial distribution of trees at stand scales. Processes driving the coexistence of trees, however, frequently unfold within gaps and questions on the role of resource heterogeneity within-gaps have become central issues in community ecology. We tested the applicability of a spatial point process modelling approach for quantifying the effects of seed dispersal, within gap light environment, microsite heterogeneity, and competition on the generation of within gap spatial structure of small tree seedlings in a temperate, old growth, mixed-species forest. By fitting a non-homogeneous Neyman–Scott point process model, we could disentangle the role of seed dispersal from niche partitioning for within gap tree establishment and did not detect seed densities as a factor explaining the clustering of small trees. We found only a very weak indication for partitioning of within gap light among the three species and detected a clear niche segregation of Picea abies (L.) Karst. on nurse logs. The other two dominating species, Abies alba Mill. and Fagus sylvatica L., did not show signs of within gap segregation.
Seed Dispersal, Microsites or Competition—What Drives Gap Regeneration in an Old-Growth Forest? An Application of Spatial Point Process Modelling
Georg Gratzer (author) / Rasmus Plenge Waagepetersen (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Natural Regeneration Microsites for Douglas-fir in Central Idaho
British Library Conference Proceedings | 1990
|Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide
DOAJ | 2019
|