A platform for research: civil engineering, architecture and urbanism
An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area
Focusing on the uncertainties of climate change and its effects on the built environment, on the energy responsibilities of residential building stock and on the dichotomy between the transformation and preservation of cultural heritage with a long-term perspective, this paper proposes a detailed methodology aimed at managing energy retrofit transformations and preservation actions in historic districts following “resilience thinking.” The proposed methodology pursues the traditional process of retrofitting for cultural heritage, and identifies—on building and component scales—a structural process aimed at: (i) recognizing and testing the adaptive qualities of traditional built constructions to climate change based upon the genius loci experience; (ii) diagnosing critical energy emergencies which occurred due to historical transformations or exposure to criticalities of climate change; (iii) identifying and managing improvement requirements according to priority levels of transformation (MUERI). The test on a representative case study in the south of Italy (Mediterranean area) highlighted some significant results: (i) the importance of compactness and of light-colored materials in fighting local microclimate alterations; (ii) the pivotal responsibility of roofs in current and future trends in energy consumption, promoting and testing both innovative and traditional solutions; (iii) the reduction into a limited number of buildings cases to assess, solving the complex and various combinations of features, with which suitable solutions and guidelines are associated.
An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area
Focusing on the uncertainties of climate change and its effects on the built environment, on the energy responsibilities of residential building stock and on the dichotomy between the transformation and preservation of cultural heritage with a long-term perspective, this paper proposes a detailed methodology aimed at managing energy retrofit transformations and preservation actions in historic districts following “resilience thinking.” The proposed methodology pursues the traditional process of retrofitting for cultural heritage, and identifies—on building and component scales—a structural process aimed at: (i) recognizing and testing the adaptive qualities of traditional built constructions to climate change based upon the genius loci experience; (ii) diagnosing critical energy emergencies which occurred due to historical transformations or exposure to criticalities of climate change; (iii) identifying and managing improvement requirements according to priority levels of transformation (MUERI). The test on a representative case study in the south of Italy (Mediterranean area) highlighted some significant results: (i) the importance of compactness and of light-colored materials in fighting local microclimate alterations; (ii) the pivotal responsibility of roofs in current and future trends in energy consumption, promoting and testing both innovative and traditional solutions; (iii) the reduction into a limited number of buildings cases to assess, solving the complex and various combinations of features, with which suitable solutions and guidelines are associated.
An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area
Elena Cantatore (author) / Fabio Fatiguso (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Energy resilience to climate change of historic urban districts in Mediterranean area
BASE | 2018
|Paving the Way for Climate Neutral and Resilient Historic Districts
Fraunhofer Publica | 2023
|Energy resilience to climate change of historic urban district in Mediterranean area
BASE | 2018
|Elsevier | 2024
|