A platform for research: civil engineering, architecture and urbanism
Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada
Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 (Populus spp.), hybrid willow clone SX-67 (Salix miyabeana)), and herbaceous (miscanthus (Miscanthus giganteus var. Nagara), switchgrass (Panicum virgatum)) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha−1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha−1, respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha−1) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha−1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha−1 y−1.
Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada
Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 (Populus spp.), hybrid willow clone SX-67 (Salix miyabeana)), and herbaceous (miscanthus (Miscanthus giganteus var. Nagara), switchgrass (Panicum virgatum)) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha−1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha−1, respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha−1) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha−1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha−1 y−1.
Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada
Amir Behzad Bazrgar (author) / Aeryn Ng (author) / Brent Coleman (author) / Muhammad Waseem Ashiq (author) / Andrew Gordon (author) / Naresh Thevathasan (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
RECYCLING BIOSOLIDS TO IMPROVE MARGINAL LANDS FOR BIOENERGY FEEDSTOCK PRODUCTION IN UKRAINE
DOAJ | 2021
|SRWC bioenergy productivity and economic feasibility on marginal lands
Online Contents | 2015
|Environmental and Economic Evaluation of Bioenergy in Ontario, Canada
Taylor & Francis Verlag | 2007
|Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada
Online Contents | 2017
|