A platform for research: civil engineering, architecture and urbanism
Quantitative Estimation of Soil Salinization in an Arid Region of the Keriya Oasis Based on Multidimensional Modeling
Soil salinity is one of the major factors causing land degradation and desertification on earth, especially its important damage to farming activities and land-use management in arid and semiarid regions. The salt-affected land is predominant in the Keriya River area of Northwestern China. Then, there is an urgent need for rapid, accurate, and economical monitoring in the salt-affected land. In this study, we used the electrical conductivity (EC) of 353 ground-truth measurements and predictive capability parameters of WorldView-2 (WV-2), such as satellite band reflectance and newly optimum spectral indices (OSI) based on two dimensional and three-dimensional data. The features of spectral bands were extracted and tested, and different new OSI and soil salinity indices using reflectance of wavebands were built, in which spectral data was pre-processed (based on First Derivative (R-FD), Second Derivative (R-SD), Square data (R-SQ), Reciprocal inverse (1/R), and Reciprocal First Derivative (1/R-FD)), utilizing the partial least-squares regression (PLSR) method to construct estimation models and mapping the regional soil-affected land. The results of this study are the following: (a) the new OSI had a higher relevance to EC than one-dimensional data, and (b) the cross-validation of established PLSR models indicated that the β-PLSR model based on the optimal three-band index with different process algorithm performed the best result with R2V = 0.79, Root Mean Square Errors (RMSEV) = 1.51 dS·m−1, and Relative Percent Deviation (RPD) = 2.01 and was used to map the soil salinity over the study site. The results of the study will be helpful for the study of salt-affected land monitoring and evaluation in similar environmental conditions.
Quantitative Estimation of Soil Salinization in an Arid Region of the Keriya Oasis Based on Multidimensional Modeling
Soil salinity is one of the major factors causing land degradation and desertification on earth, especially its important damage to farming activities and land-use management in arid and semiarid regions. The salt-affected land is predominant in the Keriya River area of Northwestern China. Then, there is an urgent need for rapid, accurate, and economical monitoring in the salt-affected land. In this study, we used the electrical conductivity (EC) of 353 ground-truth measurements and predictive capability parameters of WorldView-2 (WV-2), such as satellite band reflectance and newly optimum spectral indices (OSI) based on two dimensional and three-dimensional data. The features of spectral bands were extracted and tested, and different new OSI and soil salinity indices using reflectance of wavebands were built, in which spectral data was pre-processed (based on First Derivative (R-FD), Second Derivative (R-SD), Square data (R-SQ), Reciprocal inverse (1/R), and Reciprocal First Derivative (1/R-FD)), utilizing the partial least-squares regression (PLSR) method to construct estimation models and mapping the regional soil-affected land. The results of this study are the following: (a) the new OSI had a higher relevance to EC than one-dimensional data, and (b) the cross-validation of established PLSR models indicated that the β-PLSR model based on the optimal three-band index with different process algorithm performed the best result with R2V = 0.79, Root Mean Square Errors (RMSEV) = 1.51 dS·m−1, and Relative Percent Deviation (RPD) = 2.01 and was used to map the soil salinity over the study site. The results of the study will be helpful for the study of salt-affected land monitoring and evaluation in similar environmental conditions.
Quantitative Estimation of Soil Salinization in an Arid Region of the Keriya Oasis Based on Multidimensional Modeling
Nijat Kasim (author) / Balati Maihemuti (author) / Rukeya Sawut (author) / Abdugheni Abliz (author) / Cui Dong (author) / Munira Abdumutallip (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Landscape Design as a Tool to Reduce Soil Salinization: The Study Case of Keriya Oasis (NW China)
DOAJ | 2019
|Relationship between Soil Salinization and Groundwater Hydration in Yaoba Oasis, Northwest China
DOAJ | 2019
|Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China
DOAJ | 2018
|