A platform for research: civil engineering, architecture and urbanism
Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces
This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core). We quantified and valued natural capital (tree and soil carbon stocks) ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction) and disservices (greenhouse gas emissions and soil soluble reactive phosphorus) within a 30-hectare heterogeneous green space that included approximately 13% wetland, 13% prairie, 16% forest, and 55% subdivision. We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1000+ per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual greenhouse gas emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie. Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public) urban or suburban lots may benefit from careful consideration of small-scale variability.
Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces
This study investigates small-scale variability in ecosystem services and disservices that is important for sustainable planning in urban areas (including suburbs surrounding the urban core). We quantified and valued natural capital (tree and soil carbon stocks) ecosystem services (annual tree carbon sequestration and pollutant uptake, and stormwater runoff reduction) and disservices (greenhouse gas emissions and soil soluble reactive phosphorus) within a 30-hectare heterogeneous green space that included approximately 13% wetland, 13% prairie, 16% forest, and 55% subdivision. We found similar soil organic carbon across green space types, but spatial heterogeneity in other ecosystem services and disservices. The value of forest tree carbon stock was estimated at approximately $10,000 per hectare. Tree carbon sequestration, and pollutant uptake added benefits of $1000+ per hectare per year. Annual per hectare benefits from tree carbon stock and ecosystem services in the subdivision were each 63% of forest values. Total annual greenhouse gas emissions had significant spatial and temporal variation. Soil soluble reactive phosphorus was significantly higher in the wetland than in forest and prairie. Our results have implications for urban planning. Adding or improving ecosystem service provision on small (private or public) urban or suburban lots may benefit from careful consideration of small-scale variability.
Valuing Ecosystem Services and Disservices across Heterogeneous Green Spaces
Christie Klimas (author) / Allison Williams (author) / Megan Hoff (author) / Beth Lawrence (author) / Jennifer Thompson (author) / James Montgomery (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
TIBKAT | 2021
|Predation‐mediated ecosystem services and disservices in agricultural landscapes
Wiley | 2018
|