A platform for research: civil engineering, architecture and urbanism
Avoided population exposure to extreme heat under two scenarios of global carbon neutrality by 2050 and 2060
To mitigate global warming and the resulting climate risk, many countries have accelerated the optimization of industrial structures and mixture of energy type in an attempt to achieve carbon neutrality by the second half of the 21st century. Here, we present the first assessment of the quantitative benefits of population exposure to extreme heat (defined by the heat index) during 2040–2049 under two scenarios of global carbon neutrality by 2060 and 2050, i.e. moderate green (MODGREEN) and strong green (STRGREEN) recovery scenarios, relative to the baseline scenario of Shared Socioeconomic Pathway (SSP) 2–4.5. Global mean extreme heat days increase by 12.1 d yr ^−1 (108%) during 2040–2049 under the SSP2-4.5 scenario relative to the historical period (1995–2014). The aggravating extreme heat events could be mitigated by as much as 12% and 18% during 2040–2049 under the MODGREEN and STRGREEN scenarios, respectively. Following the changes in extreme heat days, global population exposure to extreme heat is mitigated by 27.3 billion person-days (7%) in the MODGREEN scenario and 39.9 billion person-days (11%) in the STRGREEN scenario during 2040–2049 relative to the SSP2-4.5 scenario. Such benefits from these low-carbon policies are larger in regional hotspots, including India and Northern Africa, which have experienced high population growth and have extremely limited medical infrastructure. Moreover, an early carbon neutrality (2050 vs 2060) could avoid 12.6 billion person-days exposure to extreme heat during 2040–2049. Our results provide an important scientific support for governments to drive early policymaking for climate change mitigation.
Avoided population exposure to extreme heat under two scenarios of global carbon neutrality by 2050 and 2060
To mitigate global warming and the resulting climate risk, many countries have accelerated the optimization of industrial structures and mixture of energy type in an attempt to achieve carbon neutrality by the second half of the 21st century. Here, we present the first assessment of the quantitative benefits of population exposure to extreme heat (defined by the heat index) during 2040–2049 under two scenarios of global carbon neutrality by 2060 and 2050, i.e. moderate green (MODGREEN) and strong green (STRGREEN) recovery scenarios, relative to the baseline scenario of Shared Socioeconomic Pathway (SSP) 2–4.5. Global mean extreme heat days increase by 12.1 d yr ^−1 (108%) during 2040–2049 under the SSP2-4.5 scenario relative to the historical period (1995–2014). The aggravating extreme heat events could be mitigated by as much as 12% and 18% during 2040–2049 under the MODGREEN and STRGREEN scenarios, respectively. Following the changes in extreme heat days, global population exposure to extreme heat is mitigated by 27.3 billion person-days (7%) in the MODGREEN scenario and 39.9 billion person-days (11%) in the STRGREEN scenario during 2040–2049 relative to the SSP2-4.5 scenario. Such benefits from these low-carbon policies are larger in regional hotspots, including India and Northern Africa, which have experienced high population growth and have extremely limited medical infrastructure. Moreover, an early carbon neutrality (2050 vs 2060) could avoid 12.6 billion person-days exposure to extreme heat during 2040–2049. Our results provide an important scientific support for governments to drive early policymaking for climate change mitigation.
Avoided population exposure to extreme heat under two scenarios of global carbon neutrality by 2050 and 2060
Yadong Lei (author) / Zhili Wang (author) / Xiaoye Zhang (author) / Huizheng Che (author) / Xu Yue (author) / Chenguang Tian (author) / Junting Zhong (author) / Lifeng Guo (author) / Lei Li (author) / Hao Zhou (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sustainable negative emissions in Europe: evaluating scenarios to meet carbon neutrality by 2050
DOAJ | 2024
|China Building Energy Use and Carbon Emission Yearbook 2021 : A Roadmap to Carbon Neutrality by 2060
UB Braunschweig | 2022
|Decarbonization scenarios and carbon reduction potential for China’s road transportation by 2060
Springer Verlag | 2022
|