A platform for research: civil engineering, architecture and urbanism
Arctic amplification of climate change: a review of underlying mechanisms
Arctic amplification (AA)—referring to the enhancement of near-surface air temperature change over the Arctic relative to lower latitudes—is a prominent feature of climate change with important impacts on human and natural systems. In this review, we synthesize current understanding of the underlying physical mechanisms that can give rise to AA. These mechanisms include both local feedbacks and changes in poleward energy transport. Temperature and sea ice-related feedbacks are especially important for AA, since they are significantly more positive over the Arctic than at lower latitudes. Changes in energy transport by the atmosphere and ocean can also contribute to AA. These energy transport changes are tightly coupled with local feedbacks, and thus their respective contributions to AA should not be considered in isolation. It is here emphasized that the feedbacks and energy transport changes that give rise to AA are sensitively dependent on the state of the climate system itself. This implies that changes in the climate state will lead to changes in the strength of AA, with implications for past and future climate change.
Arctic amplification of climate change: a review of underlying mechanisms
Arctic amplification (AA)—referring to the enhancement of near-surface air temperature change over the Arctic relative to lower latitudes—is a prominent feature of climate change with important impacts on human and natural systems. In this review, we synthesize current understanding of the underlying physical mechanisms that can give rise to AA. These mechanisms include both local feedbacks and changes in poleward energy transport. Temperature and sea ice-related feedbacks are especially important for AA, since they are significantly more positive over the Arctic than at lower latitudes. Changes in energy transport by the atmosphere and ocean can also contribute to AA. These energy transport changes are tightly coupled with local feedbacks, and thus their respective contributions to AA should not be considered in isolation. It is here emphasized that the feedbacks and energy transport changes that give rise to AA are sensitively dependent on the state of the climate system itself. This implies that changes in the climate state will lead to changes in the strength of AA, with implications for past and future climate change.
Arctic amplification of climate change: a review of underlying mechanisms
Michael Previdi (author) / Karen L Smith (author) / Lorenzo M Polvani (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Climate Change Impacts to Arctic Airfields
ASCE | 2024
|Stability of the arctic halocline: a new indicator of arctic climate change
DOAJ | 2018
|