A platform for research: civil engineering, architecture and urbanism
Real-Time Estimation of Tree Position, Tree Height, and Tree Diameter at Breast Height Point, Using Smartphones Based on Monocular SLAM
Precisely estimating the position, diameter at breast height (DBH), and height of trees is essential in forest resource inventory. Augmented reality (AR)-based devices help overcome the issue of inconsistent global point cloud data under thick forest canopies with insufficient Global Navigation Satellite System (GNSS) coverage. Although monocular simultaneous localization and mapping (SLAM) is one of the current mainstream systems, there is still no monocular SLAM solution for forest resource inventories, particularly for the precise measurement of inclined trees. We developed a forest plot survey system based on monocular SLAM that utilizes array cameras and Inertial Measurement Unit (IMU) sensors provided by smartphones, combined with augmented reality technology, to achieve a real-time estimation of the position, DBH, and height of trees within forest plots. Our results from the tested plots showed that the tree position estimation is unbiased, with an RMSE of 0.12 m and 0.11 m in the x-axis and y-axis directions, respectively; the DBH estimation bias is −0.17 cm (−0.65%), with an RMSE of 0.83 cm (3.59%), while the height estimation bias is −0.1 m (−0.95%), with an RMSE of 0.99 m (5.38%). This study will be useful in designing an algorithm to estimate the DBH and position of inclined trees using point clouds constrained by sectional planes at the breast height of the trunk, developing an algorithm to estimate the height of inclined trees utilizing the relationship between rays and plane positions, and providing observers with visual measurement results using augmented reality technology, allowing them to judge the accuracy of the estimates intuitively. Clearly, this system has significant potential applications in forest resource management and ecological research.
Real-Time Estimation of Tree Position, Tree Height, and Tree Diameter at Breast Height Point, Using Smartphones Based on Monocular SLAM
Precisely estimating the position, diameter at breast height (DBH), and height of trees is essential in forest resource inventory. Augmented reality (AR)-based devices help overcome the issue of inconsistent global point cloud data under thick forest canopies with insufficient Global Navigation Satellite System (GNSS) coverage. Although monocular simultaneous localization and mapping (SLAM) is one of the current mainstream systems, there is still no monocular SLAM solution for forest resource inventories, particularly for the precise measurement of inclined trees. We developed a forest plot survey system based on monocular SLAM that utilizes array cameras and Inertial Measurement Unit (IMU) sensors provided by smartphones, combined with augmented reality technology, to achieve a real-time estimation of the position, DBH, and height of trees within forest plots. Our results from the tested plots showed that the tree position estimation is unbiased, with an RMSE of 0.12 m and 0.11 m in the x-axis and y-axis directions, respectively; the DBH estimation bias is −0.17 cm (−0.65%), with an RMSE of 0.83 cm (3.59%), while the height estimation bias is −0.1 m (−0.95%), with an RMSE of 0.99 m (5.38%). This study will be useful in designing an algorithm to estimate the DBH and position of inclined trees using point clouds constrained by sectional planes at the breast height of the trunk, developing an algorithm to estimate the height of inclined trees utilizing the relationship between rays and plane positions, and providing observers with visual measurement results using augmented reality technology, allowing them to judge the accuracy of the estimates intuitively. Clearly, this system has significant potential applications in forest resource management and ecological research.
Real-Time Estimation of Tree Position, Tree Height, and Tree Diameter at Breast Height Point, Using Smartphones Based on Monocular SLAM
Jueying Su (author) / Yongxiang Fan (author) / Abdul Mannan (author) / Shan Wang (author) / Lin Long (author) / Zhongke Feng (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Tree Diameter at Breast Height Extraction Based on Mobile Laser Scanning Point Cloud
DOAJ | 2024
|