A platform for research: civil engineering, architecture and urbanism
Soil Fungal Community in Norway Spruce Forests under Bark Beetle Attack
Bark beetle infestation is a widespread phenomenon in temperate forests, which are facing significant weather fluctuations accompanying climate change. Fungi play key roles in forest ecosystems as symbionts of ectomycorrhizal trees, decomposers, or parasites, but the effect of severe disturbances on their communities is largely unknown. The responses of soil fungal communities following bark beetle attack were determined using Illumina sequencing of soil samples from 10 microsites in a mature forest not attacked by bark beetle, a forest attacked by bark beetle, a forest destroyed by bark beetle, and a stand where all trees were removed after a windstorm. The proportion of ITS2 sequences assigned to mycorrhizal fungal species decreased with increased intensity of bark beetle attack (from 70 to 15%), whereas the proportion of saprotrophs increased (from 29 to 77%). Differences in the ectomycorrhizal (ECM) fungal community was further characterized by a decrease in the sequence proportion of Elaphomyces sp. and Russula sp. and an increase in Piloderma sp., Wilcoxina sp., and Thelephora terrestris. Interestingly, the species composition of the ECM fungal community in the forest one year after removing the windstorm-damaged trees was similar to that of the mature forest, despite the sequence proportion attributed to ECM fungi decreased.
Soil Fungal Community in Norway Spruce Forests under Bark Beetle Attack
Bark beetle infestation is a widespread phenomenon in temperate forests, which are facing significant weather fluctuations accompanying climate change. Fungi play key roles in forest ecosystems as symbionts of ectomycorrhizal trees, decomposers, or parasites, but the effect of severe disturbances on their communities is largely unknown. The responses of soil fungal communities following bark beetle attack were determined using Illumina sequencing of soil samples from 10 microsites in a mature forest not attacked by bark beetle, a forest attacked by bark beetle, a forest destroyed by bark beetle, and a stand where all trees were removed after a windstorm. The proportion of ITS2 sequences assigned to mycorrhizal fungal species decreased with increased intensity of bark beetle attack (from 70 to 15%), whereas the proportion of saprotrophs increased (from 29 to 77%). Differences in the ectomycorrhizal (ECM) fungal community was further characterized by a decrease in the sequence proportion of Elaphomyces sp. and Russula sp. and an increase in Piloderma sp., Wilcoxina sp., and Thelephora terrestris. Interestingly, the species composition of the ECM fungal community in the forest one year after removing the windstorm-damaged trees was similar to that of the mature forest, despite the sequence proportion attributed to ECM fungi decreased.
Soil Fungal Community in Norway Spruce Forests under Bark Beetle Attack
Petra Veselá (author) / Martina Vašutová (author) / Magda Edwards-Jonášová (author) / Pavel Cudlín (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ectomycorrhizal Community on Norway Spruce Seedlings Following Bark Beetle Infestation
DOAJ | 2019
|Monoterpene emissions from bark beetle infested Engelmann spruce trees
Elsevier | 2013
|Monoterpene emissions from bark beetle infested Engelmann spruce trees
Elsevier | 2013
|