A platform for research: civil engineering, architecture and urbanism
Degradation of Tryptophan by UV Irradiation: Influencing Parameters and Mechanisms
The chlorination of dissolved amino acids can generate disinfection by-products (DBPs). To prevent the formation of DBPs, we examined the UV-induced degradation of tryptophan (Trp). In order to further understand the impact of UV disinfection on Trp, the effects of initial concentrations of Trp, pH, temperature, concentrations of NO3−, HCO3− and Cl− on Trp removal were investigated, and a degradation mechanism was also proposed. The results demonstrated that degradation fitted a pseudo first-order reaction kinetic model. The degradation of Trp was mainly caused by direct UV degradation. The apparent rate constant kobs decreased with the increase in initial Trp concentration and increased with increases in pH and temperature. The thermal degradation activation energy was 19.65 kJ/mol. Anions in water also had a significant influence on the degradation of Trp. HCO3− and NO3− contributed to the kobs of Trp, but Cl− inhibited the degradation rate. By electron paramagnetic resonance (EPR) spectroscopy, ·OH was proven to be formed during the degradation of Trp by UV. Based on the intermediate products of C11H15NO3, C10H15N and C9H13N detected by LC-MS-MS, the degradation pathway of Trp was speculated.
Degradation of Tryptophan by UV Irradiation: Influencing Parameters and Mechanisms
The chlorination of dissolved amino acids can generate disinfection by-products (DBPs). To prevent the formation of DBPs, we examined the UV-induced degradation of tryptophan (Trp). In order to further understand the impact of UV disinfection on Trp, the effects of initial concentrations of Trp, pH, temperature, concentrations of NO3−, HCO3− and Cl− on Trp removal were investigated, and a degradation mechanism was also proposed. The results demonstrated that degradation fitted a pseudo first-order reaction kinetic model. The degradation of Trp was mainly caused by direct UV degradation. The apparent rate constant kobs decreased with the increase in initial Trp concentration and increased with increases in pH and temperature. The thermal degradation activation energy was 19.65 kJ/mol. Anions in water also had a significant influence on the degradation of Trp. HCO3− and NO3− contributed to the kobs of Trp, but Cl− inhibited the degradation rate. By electron paramagnetic resonance (EPR) spectroscopy, ·OH was proven to be formed during the degradation of Trp by UV. Based on the intermediate products of C11H15NO3, C10H15N and C9H13N detected by LC-MS-MS, the degradation pathway of Trp was speculated.
Degradation of Tryptophan by UV Irradiation: Influencing Parameters and Mechanisms
Kejia Zhang (author) / Weicheng Fei (author) / Jingxuan Ji (author) / Yulong Yang (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Collapse of fresh foam concrete: Mechanisms and influencing parameters
Elsevier | 2021
|Degradation of Benzothiophene by Ultrasonic Irradiation: Intermediates and Parameters
British Library Online Contents | 2003
|British Library Online Contents | 2011
|