A platform for research: civil engineering, architecture and urbanism
Accurately predicting network-level traffic conditions has been identified as a critical need for smart and advanced transportation services. In recent decades, machine learning and artificial intelligence have been widely applied for traffic state, including traffic volume prediction. This paper proposes a novel deep learning model, Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF), for network-wide multi-step traffic volume prediction. More specifically, the proposed GCNN-DDGF model can automatically capture hidden spatiotemporal correlations between traffic detectors, and its sequence-to-sequence recurrent neural network architecture is able to further utilize temporal dependency from historical traffic flow data for multi-step prediction. The proposed model was tested in a network-wide hourly traffic volume dataset between 1 January 2018 and 30 June 2019 from 150 sensors in the Los Angeles area. Detailed experimental results illustrate that the proposed model outperforms the other five widely used deep learning and machine learning models in terms of computational efficiency and prediction accuracy. For instance, the GCNN-DDGF model improves MAE, MAPE, and RMSE by 25.33%, 20.45%, and 29.20% compared to the state-of-the-art models, such as Diffusion Convolution Recurrent Neural Network (DCRNN), which is widely accepted as a popular and effective deep learning model.
Accurately predicting network-level traffic conditions has been identified as a critical need for smart and advanced transportation services. In recent decades, machine learning and artificial intelligence have been widely applied for traffic state, including traffic volume prediction. This paper proposes a novel deep learning model, Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF), for network-wide multi-step traffic volume prediction. More specifically, the proposed GCNN-DDGF model can automatically capture hidden spatiotemporal correlations between traffic detectors, and its sequence-to-sequence recurrent neural network architecture is able to further utilize temporal dependency from historical traffic flow data for multi-step prediction. The proposed model was tested in a network-wide hourly traffic volume dataset between 1 January 2018 and 30 June 2019 from 150 sensors in the Los Angeles area. Detailed experimental results illustrate that the proposed model outperforms the other five widely used deep learning and machine learning models in terms of computational efficiency and prediction accuracy. For instance, the GCNN-DDGF model improves MAE, MAPE, and RMSE by 25.33%, 20.45%, and 29.20% compared to the state-of-the-art models, such as Diffusion Convolution Recurrent Neural Network (DCRNN), which is widely accepted as a popular and effective deep learning model.
Data-Driven Graph Filter-Based Graph Convolutional Neural Network Approach for Network-Level Multi-Step Traffic Prediction
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Rockburst Prediction via Multiscale Graph Convolutional Neural Network
Springer Verlag | 2025
|Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
DOAJ | 2023
|