A platform for research: civil engineering, architecture and urbanism
Uptake and Transfer of Polyamide Microplastics in a Freshwater Mesocosm Study
Steadily increasing inputs of microplastics pose a growing threat to aquatic fauna, but laboratory studies potentially lack realism to properly investigate its effects on populations and ecosystems. Our study investigates the trophic and ontogenetic transfer of microplastics in a near-natural exposure scenario. The controlled outdoor freshwater mesocosms were exposed to polyamide (PA) 5–50 µm in size in concentrations of 15 and 150 mg L−1 and a control without microplastic addition. To verify the uptake of particles via the food chain, larvae and imagines of the midges Chaoborus crystallinus and C. obscuripes were examined, which feed on zooplankton during their larval stage. Larvae were captured after 117 days and imagines were caught in emergence traps that were emptied weekly. To detect the microparticles within the organisms, 200 larvae and 100 imagines per application were macerated and treated with fluorescent dye before investigation under a fluorescent microscope. We could detect up to 12 PA particles per individual larvae, while nearly no plastic was found in the imagines. This shows that, while Chaoborus sp. takes up microplastics via predation, most of the pollutant is egested through regurgitation and remains in the water, where it can further accumulate and potentially harm other organisms.
Uptake and Transfer of Polyamide Microplastics in a Freshwater Mesocosm Study
Steadily increasing inputs of microplastics pose a growing threat to aquatic fauna, but laboratory studies potentially lack realism to properly investigate its effects on populations and ecosystems. Our study investigates the trophic and ontogenetic transfer of microplastics in a near-natural exposure scenario. The controlled outdoor freshwater mesocosms were exposed to polyamide (PA) 5–50 µm in size in concentrations of 15 and 150 mg L−1 and a control without microplastic addition. To verify the uptake of particles via the food chain, larvae and imagines of the midges Chaoborus crystallinus and C. obscuripes were examined, which feed on zooplankton during their larval stage. Larvae were captured after 117 days and imagines were caught in emergence traps that were emptied weekly. To detect the microparticles within the organisms, 200 larvae and 100 imagines per application were macerated and treated with fluorescent dye before investigation under a fluorescent microscope. We could detect up to 12 PA particles per individual larvae, while nearly no plastic was found in the imagines. This shows that, while Chaoborus sp. takes up microplastics via predation, most of the pollutant is egested through regurgitation and remains in the water, where it can further accumulate and potentially harm other organisms.
Uptake and Transfer of Polyamide Microplastics in a Freshwater Mesocosm Study
Diana Noemi Michler-Kozma (author) / Lukas Kruckenfellner (author) / Anna Heitkamp (author) / Klaus Peter Ebke (author) / Friederike Gabel (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ecotoxicological Assessment of Microplastics in Freshwater Sources—A Review
DOAJ | 2020
|Microplastics ingestion by a common tropical freshwater fishing resource
Online Contents | 2017
|