A platform for research: civil engineering, architecture and urbanism
Global patterns of shallow groundwater temperatures
Only meters below our feet, shallow aquifers serve as sustainable energy source and provide freshwater storage and ecological habitats. All of these aspects are crucially impacted by the thermal regime of the subsurface. Due to the limited accessibility of aquifers however, temperature measurements are scarce. Most commonly, shallow groundwater temperatures are approximated by adding an offset to annual mean surface air temperatures. Yet, the value of this offset is not well defined, often arbitrarily set, and rarely validated. Here, we propose the usage of satellite-derived land surface temperatures instead of surface air temperatures. 2 548 measurement points in 29 countries are compiled, revealing characteristic trends in the offset between shallow groundwater temperatures and land surface temperatures. Here it is shown that evapotranspiration and snow cover impact on this offset globally, through latent heat flow and insulation. Considering these two processes only, global shallow groundwater temperatures are estimated in a resolution of approximately 1 km × 1 km. When comparing these estimated groundwater temperatures with measured ones a coefficient of determination of 0.95 and a root mean square error of 1.4 K is found.
Global patterns of shallow groundwater temperatures
Only meters below our feet, shallow aquifers serve as sustainable energy source and provide freshwater storage and ecological habitats. All of these aspects are crucially impacted by the thermal regime of the subsurface. Due to the limited accessibility of aquifers however, temperature measurements are scarce. Most commonly, shallow groundwater temperatures are approximated by adding an offset to annual mean surface air temperatures. Yet, the value of this offset is not well defined, often arbitrarily set, and rarely validated. Here, we propose the usage of satellite-derived land surface temperatures instead of surface air temperatures. 2 548 measurement points in 29 countries are compiled, revealing characteristic trends in the offset between shallow groundwater temperatures and land surface temperatures. Here it is shown that evapotranspiration and snow cover impact on this offset globally, through latent heat flow and insulation. Considering these two processes only, global shallow groundwater temperatures are estimated in a resolution of approximately 1 km × 1 km. When comparing these estimated groundwater temperatures with measured ones a coefficient of determination of 0.95 and a root mean square error of 1.4 K is found.
Global patterns of shallow groundwater temperatures
Susanne A Benz (author) / Peter Bayer (author) / Philipp Blum (author)
2017
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Increased Groundwater Temperatures and Their Potential for Shallow Geothermal Use in Urban Areas
BASE | 2020
|Managing shallow groundwater: soil and groundwater salinity responses
British Library Conference Proceedings | 1998
|Glyphosate in shallow groundwater in Canada
British Library Conference Proceedings | 2008
|Shallow groundwater pumping drainage type dewatering system
European Patent Office | 2023
|