A platform for research: civil engineering, architecture and urbanism
Ecosystem Organic Carbon Stock Estimations in the Sile River, North Eastern Italy
River ecosystems are one of the dynamic components of the terrestrial carbon cycle that provide a crucial function in ecosystem processes and high value to ecosystem services. A large amount of carbon is transported from terrestrial to the ocean through river flows. In order to evaluate the contribution of Sile River ecosystem to the global carbon stock, the river ecosystem Organic Carbon (OC) stock was quantified for sediments and dominant submerged aquatic macrophytes (SAMs) during the two sampling periods at three different stations along the Sile River (North Eastern Italy). The total mean ecosystem OC stock was 95.2 ± 13.8 Mg C ha−1 while those of SAMs ranged from 7.0 to 10.9 Mg C ha−1 which accounted for approx. 10% of the total OC stock. The total aboveground biomass retains approx. 90% of the SAM carbon stock, with a mean of 8.9 ± 1.6 Mg C ha−1. The mean sediment OC stock was 86.6 ± 14.5 Mg C ha−1 with low seasonal variations among the sites. Indeed, various environmental parameters and hydrodynamics appear to affect the accumulation of OC within the river ecosystem. The results highlight the role that freshwater river ecosystems play in the global carbon cycle, which consequently provide a baseline for future river ecosystem monitoring programs. Furthermore, future studies with additional sites and seasonal surveys of the river will enhance our understanding of the effects of global climate change on the river ecosystem and improve the ecosystem services.
Ecosystem Organic Carbon Stock Estimations in the Sile River, North Eastern Italy
River ecosystems are one of the dynamic components of the terrestrial carbon cycle that provide a crucial function in ecosystem processes and high value to ecosystem services. A large amount of carbon is transported from terrestrial to the ocean through river flows. In order to evaluate the contribution of Sile River ecosystem to the global carbon stock, the river ecosystem Organic Carbon (OC) stock was quantified for sediments and dominant submerged aquatic macrophytes (SAMs) during the two sampling periods at three different stations along the Sile River (North Eastern Italy). The total mean ecosystem OC stock was 95.2 ± 13.8 Mg C ha−1 while those of SAMs ranged from 7.0 to 10.9 Mg C ha−1 which accounted for approx. 10% of the total OC stock. The total aboveground biomass retains approx. 90% of the SAM carbon stock, with a mean of 8.9 ± 1.6 Mg C ha−1. The mean sediment OC stock was 86.6 ± 14.5 Mg C ha−1 with low seasonal variations among the sites. Indeed, various environmental parameters and hydrodynamics appear to affect the accumulation of OC within the river ecosystem. The results highlight the role that freshwater river ecosystems play in the global carbon cycle, which consequently provide a baseline for future river ecosystem monitoring programs. Furthermore, future studies with additional sites and seasonal surveys of the river will enhance our understanding of the effects of global climate change on the river ecosystem and improve the ecosystem services.
Ecosystem Organic Carbon Stock Estimations in the Sile River, North Eastern Italy
Alessandro Buosi (author) / Yari Tomio (author) / Abdul-Salam Juhmani (author) / Adriano Sfriso (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2005
|