A platform for research: civil engineering, architecture and urbanism
Spatial and Seasonal Variation of O and H Isotopes in the Jiulong River, Southeast China
The stable isotope technique of oxygen and hydrogen (δ18O and δ2H) and deuterium excess (d-excess) was used to investigate distribution characteristics in June 2017 and January 2018 in the Jiulong River, southeast China. The results revealed that (1) seasonal isotopic composition was mainly controlled by precipitation. It enriched lighter water isotopes in winter more than in summer because of the aggravating effect of low temperature and great rainfall. (2) Spatial distribution of the North, West, and South River showed increasing enrichment of heavy isotopes in that order. In the high-flow season, the continuous high-flow made δ18O and δ2H homogeneous, despite increasing weak evaporation along water-flow paths in the West and South River. In the low-flow season, there was a decreasing trend in the middle and lower reaches of the North and West main stream and an increasing trend in the South River. (3) O and H isotopic geochemistry exhibited natural and anthropogenic influence in hydrological process, such as heavy rainfall and cascade reservoirs. The results showed that O and H isotopes are indeed useful tracers of the water cycle.
Spatial and Seasonal Variation of O and H Isotopes in the Jiulong River, Southeast China
The stable isotope technique of oxygen and hydrogen (δ18O and δ2H) and deuterium excess (d-excess) was used to investigate distribution characteristics in June 2017 and January 2018 in the Jiulong River, southeast China. The results revealed that (1) seasonal isotopic composition was mainly controlled by precipitation. It enriched lighter water isotopes in winter more than in summer because of the aggravating effect of low temperature and great rainfall. (2) Spatial distribution of the North, West, and South River showed increasing enrichment of heavy isotopes in that order. In the high-flow season, the continuous high-flow made δ18O and δ2H homogeneous, despite increasing weak evaporation along water-flow paths in the West and South River. In the low-flow season, there was a decreasing trend in the middle and lower reaches of the North and West main stream and an increasing trend in the South River. (3) O and H isotopic geochemistry exhibited natural and anthropogenic influence in hydrological process, such as heavy rainfall and cascade reservoirs. The results showed that O and H isotopes are indeed useful tracers of the water cycle.
Spatial and Seasonal Variation of O and H Isotopes in the Jiulong River, Southeast China
Kunhua Yang (author) / Guilin Han (author) / Man Liu (author) / Xiaoqiang Li (author) / Jinke Liu (author) / Qian Zhang (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Seasonal Variation of Dissolved Oxygen in the Southeast of the Pearl River Estuary
DOAJ | 2020
|