A platform for research: civil engineering, architecture and urbanism
Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan
Fossil fuel-based energy systems are mostly used for supplying energy that creates negative impacts on the environment, so in this study, the development of a 100% renewable energy system is evaluated for Pakistan for sustainable climate change. This study modeled three scenarios, namely, ongoing (ONG), energy saving policy (ESP), and green energy policy (GEP) scenarios using low emission analysis platform (LEAP) software for the study period 2022 to 2050 for Pakistan. The results revealed that a 100% renewable energy supply could be achieved through the GEP scenario. Model results show that the share of renewable sources in the total energy mix is 1117.08 TWh and non-renewable sources contribute only 18.12 TWh to meet the energy demand of 966.05 TWh until 2050. Non-renewable production leads to the generation of 8.85 million metric tons of carbon emissions, which is too low compared with the 135.47 million metric tons under the ONG scenario. The USD 1482.46 billion investment cost required for adding renewable energy capacity until 2050 is too high as compared with the USD 46.80 billion under the ONG scenario. Energy demand and production requirements are reduced by 34.18% under the ESP scenario until 2050. This approach can also be applicable to the majority of nations worldwide.
Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan
Fossil fuel-based energy systems are mostly used for supplying energy that creates negative impacts on the environment, so in this study, the development of a 100% renewable energy system is evaluated for Pakistan for sustainable climate change. This study modeled three scenarios, namely, ongoing (ONG), energy saving policy (ESP), and green energy policy (GEP) scenarios using low emission analysis platform (LEAP) software for the study period 2022 to 2050 for Pakistan. The results revealed that a 100% renewable energy supply could be achieved through the GEP scenario. Model results show that the share of renewable sources in the total energy mix is 1117.08 TWh and non-renewable sources contribute only 18.12 TWh to meet the energy demand of 966.05 TWh until 2050. Non-renewable production leads to the generation of 8.85 million metric tons of carbon emissions, which is too low compared with the 135.47 million metric tons under the ONG scenario. The USD 1482.46 billion investment cost required for adding renewable energy capacity until 2050 is too high as compared with the USD 46.80 billion under the ONG scenario. Energy demand and production requirements are reduced by 34.18% under the ESP scenario until 2050. This approach can also be applicable to the majority of nations worldwide.
Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan
Muhammad Amir Raza (author) / Muhammad Mohsin Aman (author) / Altaf Hussain Rajpar (author) / Mohamed Bashir Ali Bashir (author) / Touqeer Ahmed Jumani (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Sustainable development, climate change, and renewable energy in rural Central America
BASE | 2016
|Renewable energy - Achieving Scotland's targets
Online Contents | 2003
Dynamic cities: achieving sustainable change
British Library Conference Proceedings | 1995
|Sustainable architectural design: towards climate change mitigation
Emerald Group Publishing | 2020
|