A platform for research: civil engineering, architecture and urbanism
Study on Urban Thermal Environment in Beijing Based on Local Climate Zone Method
In recent years, with the introduction of the concept of a local climate zone (LCZ), researchers have proved that adding an LCZ to the Weather Research and Forecasting (WRF) Model can improve the simulation effect. However, many existing studies cannot explain whether the improvement of accuracy in the model results is the effect of the refined zone or the effect of urban area correction, so they cannot explain the advantages of LCZ data. Therefore, this paper uses remote sensing images to generate two kinds of land use data sets and introduces them into the Weather Research and Forecasting Model coupled with the building energy model (WRF-BEM). In this paper, the two factors of urban area expansion and fine classification are considered, and three numerical examples are set up to simulate high-temperature weather in August 2019. The research shows that the simulated 2 m temperature of the scheme of correcting only urban area is the closest to the observed data. Although the RMSE in the 2 m temperature simulated by the LCZ scheme is 0.43 °C higher than that of the scheme of correcting only the urban area, it can well reproduce the spatial variation characteristics of 2 m temperature. In addition, different urban morphologies affect the spatial distribution of the surface urban heat islands in Beijing. High surface urban heat island effect zones mainly appear in the compact low-rise, compact mid-rise, and large low-rise types.
Study on Urban Thermal Environment in Beijing Based on Local Climate Zone Method
In recent years, with the introduction of the concept of a local climate zone (LCZ), researchers have proved that adding an LCZ to the Weather Research and Forecasting (WRF) Model can improve the simulation effect. However, many existing studies cannot explain whether the improvement of accuracy in the model results is the effect of the refined zone or the effect of urban area correction, so they cannot explain the advantages of LCZ data. Therefore, this paper uses remote sensing images to generate two kinds of land use data sets and introduces them into the Weather Research and Forecasting Model coupled with the building energy model (WRF-BEM). In this paper, the two factors of urban area expansion and fine classification are considered, and three numerical examples are set up to simulate high-temperature weather in August 2019. The research shows that the simulated 2 m temperature of the scheme of correcting only urban area is the closest to the observed data. Although the RMSE in the 2 m temperature simulated by the LCZ scheme is 0.43 °C higher than that of the scheme of correcting only the urban area, it can well reproduce the spatial variation characteristics of 2 m temperature. In addition, different urban morphologies affect the spatial distribution of the surface urban heat islands in Beijing. High surface urban heat island effect zones mainly appear in the compact low-rise, compact mid-rise, and large low-rise types.
Study on Urban Thermal Environment in Beijing Based on Local Climate Zone Method
Fei Han (author) / Xinqi Zheng (author) / Jiayang Li (author) / Yuwei Zhao (author) / Minrui Zheng (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Urban Environment and Local Climate
Springer Verlag | 2021
|Spatial characteristics of local floods in Beijing urban area
Online Contents | 2014
|Spatial characteristics of local floods in Beijing urban area
Taylor & Francis Verlag | 2014
|