A platform for research: civil engineering, architecture and urbanism
Water Resources Allocation in the Tingjiang River Basin: Construction of an Interval-Fuzzy Two-Stage Chance-Constraints Model and Its Assessment through Pearson Correlation
Water scarcity has become a major impediment to economic development, and a scientifically sound water allocation plan is essential to alleviate water scarcity. An opportunity constraint approach is introduced to optimise the uncertainty of the minimum regional development level under five hydrological scenarios, and an interval-fuzzy two-stage chance-constraint model (IFTSC) is constructed to improve the reliability of the model results. The correlation of each stochastic parameter in the IFTSC model with the water allocation results and the economic benefits of the Tingjiang River basin is analysed by the Pearson correlation coefficient method. Simulation results from the IFTSC model show a downward trend in overall water scarcity and an upward trend in overall economic benefits in the Tingjiang River basin. Taking the dry water scenario as an example, the water shortage in the industrial sector decreases by 9.7%, and the overall economic benefits of the Tingjiang River basin increase by 41.58 × 108 CNY. The results of the correlation analysis based on Pearson’s correlation coefficient show that water allocation is strongly positively correlated with variables such as water price and regional minimum development requirements, and economic efficiency is strongly positively correlated with unit scale output value and losses caused by water shortage. This paper provides constructive suggestions and guiding directions for the rational allocation of water resources in the Tingjiang River basin through a detailed analysis of the results and identification of the main stochastic parameters in the water allocation process.
Water Resources Allocation in the Tingjiang River Basin: Construction of an Interval-Fuzzy Two-Stage Chance-Constraints Model and Its Assessment through Pearson Correlation
Water scarcity has become a major impediment to economic development, and a scientifically sound water allocation plan is essential to alleviate water scarcity. An opportunity constraint approach is introduced to optimise the uncertainty of the minimum regional development level under five hydrological scenarios, and an interval-fuzzy two-stage chance-constraint model (IFTSC) is constructed to improve the reliability of the model results. The correlation of each stochastic parameter in the IFTSC model with the water allocation results and the economic benefits of the Tingjiang River basin is analysed by the Pearson correlation coefficient method. Simulation results from the IFTSC model show a downward trend in overall water scarcity and an upward trend in overall economic benefits in the Tingjiang River basin. Taking the dry water scenario as an example, the water shortage in the industrial sector decreases by 9.7%, and the overall economic benefits of the Tingjiang River basin increase by 41.58 × 108 CNY. The results of the correlation analysis based on Pearson’s correlation coefficient show that water allocation is strongly positively correlated with variables such as water price and regional minimum development requirements, and economic efficiency is strongly positively correlated with unit scale output value and losses caused by water shortage. This paper provides constructive suggestions and guiding directions for the rational allocation of water resources in the Tingjiang River basin through a detailed analysis of the results and identification of the main stochastic parameters in the water allocation process.
Water Resources Allocation in the Tingjiang River Basin: Construction of an Interval-Fuzzy Two-Stage Chance-Constraints Model and Its Assessment through Pearson Correlation
Ning Hao (author) / Peixuan Sun (author) / Wei He (author) / Luze Yang (author) / Yu Qiu (author) / Yingzi Chen (author) / Wenjin Zhao (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2012
|Taylor & Francis Verlag | 2012
|A Friendly Model for Water Resources Allocation in the River Basin
British Library Conference Proceedings | 2015
|