A platform for research: civil engineering, architecture and urbanism
Applications of Computational and Statistical Models for Optimizing the Electrochemical Removal of Cephalexin Antibiotic from Water
One of the most serious effects of micropollutants in the environment is biological magnification, which causes adverse effects on humans and the ecosystem. Among all of the micro-pollutants, antibiotics are commonly present in the aquatic environment due to their wide use in treating or preventing various diseases and infections for humans, plants, and animals. Therefore, an aluminum-based electrocoagulation unit has been used in this study to remove cephalexin antibiotics, as a model of the antibiotics, from water. Computational and statistical models were used to optimize the effects of key parameters on the electrochemical removal of cephalexin, including the initial cephalexin concentration (15–55 mg/L), initial pH (3–11), electrolysis time (20–40 min), and electrode type (insulated and non-insulated). The response surface methodology-central composite design (RSM-CCD) was used to investigate the dependency of the studied variables, while the artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied for predicting the experimental training data. The results showed that the best experimental and predicted removals of cephalexin (CEX) were 88.21% and 93.87%, respectively, which were obtained at a pH of 6.14 and electrolysis time of 34.26 min. The results also showed that the ANFIS model predicts and interprets the experimental results better than the ANN and RSM-CCD models. Sensitivity analysis using the Garson method showed the comparative significance of the variables as follows: pH (30%) > electrode type (27%) > initial CEX concentration (24%) > electrolysis time (19%).
Applications of Computational and Statistical Models for Optimizing the Electrochemical Removal of Cephalexin Antibiotic from Water
One of the most serious effects of micropollutants in the environment is biological magnification, which causes adverse effects on humans and the ecosystem. Among all of the micro-pollutants, antibiotics are commonly present in the aquatic environment due to their wide use in treating or preventing various diseases and infections for humans, plants, and animals. Therefore, an aluminum-based electrocoagulation unit has been used in this study to remove cephalexin antibiotics, as a model of the antibiotics, from water. Computational and statistical models were used to optimize the effects of key parameters on the electrochemical removal of cephalexin, including the initial cephalexin concentration (15–55 mg/L), initial pH (3–11), electrolysis time (20–40 min), and electrode type (insulated and non-insulated). The response surface methodology-central composite design (RSM-CCD) was used to investigate the dependency of the studied variables, while the artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied for predicting the experimental training data. The results showed that the best experimental and predicted removals of cephalexin (CEX) were 88.21% and 93.87%, respectively, which were obtained at a pH of 6.14 and electrolysis time of 34.26 min. The results also showed that the ANFIS model predicts and interprets the experimental results better than the ANN and RSM-CCD models. Sensitivity analysis using the Garson method showed the comparative significance of the variables as follows: pH (30%) > electrode type (27%) > initial CEX concentration (24%) > electrolysis time (19%).
Applications of Computational and Statistical Models for Optimizing the Electrochemical Removal of Cephalexin Antibiotic from Water
Maliheh Arab (author) / Mahdieh Ghiyasi Faramarz (author) / Khalid Hashim (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Optimization studies for catalytic ozonation of cephalexin antibiotic in a batch reactor
Online Contents | 2012
|Optimization studies for catalytic ozonation of cephalexin antibiotic in a batch reactor
British Library Online Contents | 2012
|Controlled release of antimicrobial Cephalexin drug from silica microparticles
British Library Online Contents | 2014
|British Library Online Contents | 2018
|American Chemical Society | 2023
|