A platform for research: civil engineering, architecture and urbanism
Derivation of Sustainable Reference Chemical Levels for the Protection of Italian Freshwater Ecosystems
The current environmental quality standards (EQSs) for freshwater ecosystems have been established in relation to the priority substances covered by Directive 2013/39/EU. The procedure for deriving EQSs that rely on the selection of the most sensitive toxicological data, with the application of arbitrary safety factors, is probably unrealistic for the Italian freshwater ecosystem. In this work, a procedure for the evaluation of specific sensitivity of 13 taxonomic groups from bacteria to amphibians and the derivation of protective chemical reference values specifically for the Italian aquatic communities was developed. Toxicological raw data of species belonging to the same taxonomic group spending at least one phase of their life cycle in Italian freshwater ecosystems were downloaded from EnviroTox and USEPA ECOTOX databases, aggregated, and then used as input for the model called Species Sensitivity Distribution in order to estimate the predicted no effect concentrations (PNECs). The comparison of relative sensitivity factors (RFSs) made it possible to identify the amphibians as the most sensitive group toward metals, trace elements, and pesticides, whereas crustacean were identified as the most sensitive group toward towards polycyclic aromatic hydrocarbons (PAHs). PNECs were estimated to cover 62 substances, of which 37 identified by Directive 2013/39/EU, and in most of the cases, the values were higher than EQSs. The PNECs reported in this work should be considered more realistic and tailored for Italian freshwater ecosystems, having significant repercussions in the classification of water bodies and the estimation of environmental impact assessment.
Derivation of Sustainable Reference Chemical Levels for the Protection of Italian Freshwater Ecosystems
The current environmental quality standards (EQSs) for freshwater ecosystems have been established in relation to the priority substances covered by Directive 2013/39/EU. The procedure for deriving EQSs that rely on the selection of the most sensitive toxicological data, with the application of arbitrary safety factors, is probably unrealistic for the Italian freshwater ecosystem. In this work, a procedure for the evaluation of specific sensitivity of 13 taxonomic groups from bacteria to amphibians and the derivation of protective chemical reference values specifically for the Italian aquatic communities was developed. Toxicological raw data of species belonging to the same taxonomic group spending at least one phase of their life cycle in Italian freshwater ecosystems were downloaded from EnviroTox and USEPA ECOTOX databases, aggregated, and then used as input for the model called Species Sensitivity Distribution in order to estimate the predicted no effect concentrations (PNECs). The comparison of relative sensitivity factors (RFSs) made it possible to identify the amphibians as the most sensitive group toward metals, trace elements, and pesticides, whereas crustacean were identified as the most sensitive group toward towards polycyclic aromatic hydrocarbons (PAHs). PNECs were estimated to cover 62 substances, of which 37 identified by Directive 2013/39/EU, and in most of the cases, the values were higher than EQSs. The PNECs reported in this work should be considered more realistic and tailored for Italian freshwater ecosystems, having significant repercussions in the classification of water bodies and the estimation of environmental impact assessment.
Derivation of Sustainable Reference Chemical Levels for the Protection of Italian Freshwater Ecosystems
Fulvio Onorati (author) / Andrea Tornambé (author) / Andrea Paina (author) / Micol Bellucci (author) / Gianluca Chiaretti (author) / Barbara Catalano (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Challenges for Freshwater Ecosystems
Wiley | 2019
|Recovery in Dissolved Oxygen Levels in Chinese Freshwater Ecosystems in the Past Three Decades
American Chemical Society | 2022
|Managing for Variability to Sustain Freshwater Ecosystems
Online Contents | 2009
|Managing for Variability to Sustain Freshwater Ecosystems
British Library Online Contents | 2009
|