A platform for research: civil engineering, architecture and urbanism
Event Based Post-Fire Hydrological Modeling of the Upper Arroyo Seco Watershed in Southern California
Understanding, development and integration of pre-fire and post-fire watershed hydrological processes into a watershed hydrological model in a wild-fire repeating region similar to parts of California is critical for emergency assessments. 95% of the upper Arroyo Seco watershed located in Los Angeles County in southern California was burned by the Station fire that occurred in August 2009, significantly increasing the watershed observed runoff. This watershed was employed to develop the January 2008 rainfall runoff model as a pre-fire event-based watershed hydrological model. This pre-fire watershed model was subsequently employed in the rainfall events of 18 January 2010 and 27 February 2010, a few months after the fire event of August 2009. The pre-fire watershed model when employed in the post-fire rainfall events without considering the fire effects vastly underestimated the simulated discharge. For this reason, in this study of the post-fire catchment runoff modeling the following points are taken into consideration: (a) a realistic distributed initial soil moisture condition; (b) a formulation that includes a reduction factor and a burn severity factor, as multiplying factors to soil hydraulic conductivity in the soil characteristic curve; and (c) runoff routing parameterization under burned conditions. Developing the post-fire Arroyo Seco watershed model by using the above-mentioned points enhanced the Nash–Sutcliffe Efficiency from −24% to 82% for the 18 January 2010 rainfall event and from −47% to 96% for the 27 February 2010 rainfall event.
Event Based Post-Fire Hydrological Modeling of the Upper Arroyo Seco Watershed in Southern California
Understanding, development and integration of pre-fire and post-fire watershed hydrological processes into a watershed hydrological model in a wild-fire repeating region similar to parts of California is critical for emergency assessments. 95% of the upper Arroyo Seco watershed located in Los Angeles County in southern California was burned by the Station fire that occurred in August 2009, significantly increasing the watershed observed runoff. This watershed was employed to develop the January 2008 rainfall runoff model as a pre-fire event-based watershed hydrological model. This pre-fire watershed model was subsequently employed in the rainfall events of 18 January 2010 and 27 February 2010, a few months after the fire event of August 2009. The pre-fire watershed model when employed in the post-fire rainfall events without considering the fire effects vastly underestimated the simulated discharge. For this reason, in this study of the post-fire catchment runoff modeling the following points are taken into consideration: (a) a realistic distributed initial soil moisture condition; (b) a formulation that includes a reduction factor and a burn severity factor, as multiplying factors to soil hydraulic conductivity in the soil characteristic curve; and (c) runoff routing parameterization under burned conditions. Developing the post-fire Arroyo Seco watershed model by using the above-mentioned points enhanced the Nash–Sutcliffe Efficiency from −24% to 82% for the 18 January 2010 rainfall event and from −47% to 96% for the 27 February 2010 rainfall event.
Event Based Post-Fire Hydrological Modeling of the Upper Arroyo Seco Watershed in Southern California
Nawa Raj Pradhan (author) / Ian Floyd (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Roadmap to Large-Scale Ecosystem Restoration in the Arroyo Seco Watershed
British Library Conference Proceedings | 2012
|Colorado street bridge over Arroyo Seco
Engineering Index Backfile | 1913
|Merging Form With Function: The Arroyo Seco Parkway
ASCE | 2016
|Arroyo Seco reinforced concrete bridge near Pasadena, Cal
Engineering Index Backfile | 1916
|Colorado street bridge over the Arroyo Seco, Pasadena, cal
Engineering Index Backfile | 1913