A platform for research: civil engineering, architecture and urbanism
Climatic, Edaphic and Biotic Controls over Soil δ13C and δ15N in Temperate Grasslands
Soils δ13C and δ15N are now regarded as useful indicators of nitrogen (N) status and dynamics of soil organic carbon (SOC). Numerous studies have explored the effects of various factors on soils δ13C and δ15N in terrestrial ecosystems on different scales, but it remains unclear how co-varying climatic, edaphic and biotic factors independently contribute to the variation in soil δ13C and δ15N in temperate grasslands on a large scale. To answer the above question, a large-scale soil collection was carried out along a vegetation transect across the temperate grasslands of Inner Mongolia. We found that mean annual precipitation (MAP) and mean annual temperature (MAT) do not correlate with soil δ15N along the transect, while soil δ13C linearly decreased with MAP and MAT. Soil δ15N logarithmically increased with concentrations of SOC, total N and total P. By comparison, soil δ13C linearly decreased with SOC, total N and total P. Soil δ15N logarithmically increased with microbial biomass C and microbial biomass N, while soil δ13C linearly decreased with microbial biomass C and microbial biomass N. Plant belowground biomass linearly increased with soil δ15N but decreased with soil δ13C. Soil δ15N decreased with soil δ13C along the transect. Multiple linear regressions showed that biotic and edaphic factors such as microbial biomass C and total N exert more effect on soil δ15N, whereas climatic and edaphic factors such as MAT and total P have more impact on soil δ13C. These findings show that soil C and N cycles in temperate grasslands are, to some extent, decoupled and dominantly controlled by different factors. Further investigations should focus on those ecological processes leading to decoupling of C and N cycles in temperate grassland soils.
Climatic, Edaphic and Biotic Controls over Soil δ13C and δ15N in Temperate Grasslands
Soils δ13C and δ15N are now regarded as useful indicators of nitrogen (N) status and dynamics of soil organic carbon (SOC). Numerous studies have explored the effects of various factors on soils δ13C and δ15N in terrestrial ecosystems on different scales, but it remains unclear how co-varying climatic, edaphic and biotic factors independently contribute to the variation in soil δ13C and δ15N in temperate grasslands on a large scale. To answer the above question, a large-scale soil collection was carried out along a vegetation transect across the temperate grasslands of Inner Mongolia. We found that mean annual precipitation (MAP) and mean annual temperature (MAT) do not correlate with soil δ15N along the transect, while soil δ13C linearly decreased with MAP and MAT. Soil δ15N logarithmically increased with concentrations of SOC, total N and total P. By comparison, soil δ13C linearly decreased with SOC, total N and total P. Soil δ15N logarithmically increased with microbial biomass C and microbial biomass N, while soil δ13C linearly decreased with microbial biomass C and microbial biomass N. Plant belowground biomass linearly increased with soil δ15N but decreased with soil δ13C. Soil δ15N decreased with soil δ13C along the transect. Multiple linear regressions showed that biotic and edaphic factors such as microbial biomass C and total N exert more effect on soil δ15N, whereas climatic and edaphic factors such as MAT and total P have more impact on soil δ13C. These findings show that soil C and N cycles in temperate grasslands are, to some extent, decoupled and dominantly controlled by different factors. Further investigations should focus on those ecological processes leading to decoupling of C and N cycles in temperate grassland soils.
Climatic, Edaphic and Biotic Controls over Soil δ13C and δ15N in Temperate Grasslands
Xing Zhao (author) / Xingliang Xu (author) / Fang Wang (author) / Isabel Greenberg (author) / Min Liu (author) / Rongxiao Che (author) / Li Zhang (author) / Xiaoyong Cui (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Transfer of Soil Bioengineering into New Climatic, Edaphic and Floristic Zones
British Library Conference Proceedings | 2004
|Edaphic and microclimatic controls over permafrost response to fire in interior Alaska
DOAJ | 2013
|Edaphic and microclimatic controls over permafrost response to fire in interior Alaska
IOP Institute of Physics | 2013
|