A platform for research: civil engineering, architecture and urbanism
Transmission Line Distance Protection Under Current Transformer Saturation
Conventional transmission line distance protection approaches are subject to malfunction under reverse fault-induced current transformer (CT) saturation for the typically employed breaker-and-a-half configuration. This paper addresses this issue by proposing a new distance protection approach that combines the blocking and unblocking criteria of distance protection based on the values of incomplete differential current, operation voltage, and current harmonic content. The proposed approach is verified by theoretical analysis, dynamic simulation testing, and field operation to ensure that the obtained distance protection is reliable and refrains from operating unnecessarily under reverse fault-induced CT saturation in the breaker-and-a-half configuration. Meanwhile, the proposed approach is demonstrated can operate reliably when forward faults occur or various reverse faults are converted to forward faults.
Transmission Line Distance Protection Under Current Transformer Saturation
Conventional transmission line distance protection approaches are subject to malfunction under reverse fault-induced current transformer (CT) saturation for the typically employed breaker-and-a-half configuration. This paper addresses this issue by proposing a new distance protection approach that combines the blocking and unblocking criteria of distance protection based on the values of incomplete differential current, operation voltage, and current harmonic content. The proposed approach is verified by theoretical analysis, dynamic simulation testing, and field operation to ensure that the obtained distance protection is reliable and refrains from operating unnecessarily under reverse fault-induced CT saturation in the breaker-and-a-half configuration. Meanwhile, the proposed approach is demonstrated can operate reliably when forward faults occur or various reverse faults are converted to forward faults.
Transmission Line Distance Protection Under Current Transformer Saturation
Yuping Zheng (author) / Tonghua Wu (author) / Feng Hong (author) / Gang Yao (author) / Jimin Chai (author) / Zhinong Wei (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Use of Backup Distance Protection on a Block Transformer
Online Contents | 2016
|Use of Backup Distance Protection on a Block Transformer
Online Contents | 2016
|