A platform for research: civil engineering, architecture and urbanism
Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds
Flooding and overflow are recurring problems in several Brazilian cities, which usually face disorderly development. The causes vary, and include increased impervious surface areas, deficiency/inefficiency of drainage structures and lack of maintenance, siltation of rivers, channel obstructions, and climatic factors. In this paper, we present an analysis of mitigation measures to minimize flooding in a watershed located in the core of the city of São Paulo, the biggest city with the highest gross domestic product (GDP) in Brazil. Observed rainfall records and existing intensity duration frequency (IDF) curves for the region are used to obtain design storms. To account for climate change, the equidistance quantile matching method for updating IDF curves under climate change, a well-known procedure, was applied to the existing historical data. Several different global climate models (GCMs) and one regional model were applied to obtain and update rainfall design storms. The GCMs and future scenarios used were from Intergovernmental Panel on Climate Change—IPCC Assessment Report 5 (AR5) and two future projections—representative concentration pathway (RCP) 4.5 and 8.5. Spatially distributed reservoirs combined with low-impact development (LID) measures were used to evaluate different design storm scenarios combined with return periods of 25 and 100 years as well as the updated IDF under climate change for RCP 4.5 and RCP 8.5. Results show that the proposed changes to the drainage system can help reduce the risk and damage of flooding. The climate change scenarios, however, impose a significant threat and need immediate attention from city planners and stakeholders.
Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds
Flooding and overflow are recurring problems in several Brazilian cities, which usually face disorderly development. The causes vary, and include increased impervious surface areas, deficiency/inefficiency of drainage structures and lack of maintenance, siltation of rivers, channel obstructions, and climatic factors. In this paper, we present an analysis of mitigation measures to minimize flooding in a watershed located in the core of the city of São Paulo, the biggest city with the highest gross domestic product (GDP) in Brazil. Observed rainfall records and existing intensity duration frequency (IDF) curves for the region are used to obtain design storms. To account for climate change, the equidistance quantile matching method for updating IDF curves under climate change, a well-known procedure, was applied to the existing historical data. Several different global climate models (GCMs) and one regional model were applied to obtain and update rainfall design storms. The GCMs and future scenarios used were from Intergovernmental Panel on Climate Change—IPCC Assessment Report 5 (AR5) and two future projections—representative concentration pathway (RCP) 4.5 and 8.5. Spatially distributed reservoirs combined with low-impact development (LID) measures were used to evaluate different design storm scenarios combined with return periods of 25 and 100 years as well as the updated IDF under climate change for RCP 4.5 and RCP 8.5. Results show that the proposed changes to the drainage system can help reduce the risk and damage of flooding. The climate change scenarios, however, impose a significant threat and need immediate attention from city planners and stakeholders.
Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds
Carla Voltarelli Franco da Silva (author) / Andre Schardong (author) / Joaquin Ignacio Bonnecarrère Garcia (author) / Cristiano de Pádua Milagres Oliveira (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reliability-Based Flood Management in Urban Watersheds Considering Climate Change Impacts
British Library Online Contents | 2013
|Reliability-Based Flood Management in Urban Watersheds Considering Climate Change Impacts
Online Contents | 2013
|Impacts of Rainfall Data Aggregation Time on Pluvial Flood Hazard in Urban Watersheds
DOAJ | 2022
|