A platform for research: civil engineering, architecture and urbanism
EREMI: An Innovative Interdisciplinary Approach for Higher Education in Resource Efficient Manufacturing Environments
This paper presents an overview of EREMI, a two-year project funded under ERASMUS+ KA203, and its results. The project team’s main objective was to develop and validate an advanced interdisciplinary higher education curriculum, which includes lifelong learning components. The curriculum focuses on enhancing resource efficiency in the manufacturing industry and optimising poorly or non-digitised industrial physical infrastructure systems. The paper also discusses the results of the project, highlighting the successful achievement of its goals. EREMI effectively supports the transition to Industry 5.0 by preparing a common European pool of future experts. Through comprehensive research and collaboration, the project team has designed a curriculum that equips students with the necessary skills and knowledge to thrive in the evolving manufacturing landscape. Furthermore, the paper explores the significance of EREMI’s contributions to the field, emphasising the importance of resource efficiency and system optimisation in industrial settings. By addressing the challenges posed by under-digitised infrastructure, the project aims to drive sustainable and innovative practices in manufacturing. All five project partner organisations have been actively engaged in offering relevant educational content and framework for decentralised sustainable economic development in regional and national contexts through capacity building at a local level. A crucial element of the added value is the new channel for obtaining feedback from students. The survey results, which are outlined in the paper, offer valuable insights gathered from students, contributing to the continuous improvement of the project.
EREMI: An Innovative Interdisciplinary Approach for Higher Education in Resource Efficient Manufacturing Environments
This paper presents an overview of EREMI, a two-year project funded under ERASMUS+ KA203, and its results. The project team’s main objective was to develop and validate an advanced interdisciplinary higher education curriculum, which includes lifelong learning components. The curriculum focuses on enhancing resource efficiency in the manufacturing industry and optimising poorly or non-digitised industrial physical infrastructure systems. The paper also discusses the results of the project, highlighting the successful achievement of its goals. EREMI effectively supports the transition to Industry 5.0 by preparing a common European pool of future experts. Through comprehensive research and collaboration, the project team has designed a curriculum that equips students with the necessary skills and knowledge to thrive in the evolving manufacturing landscape. Furthermore, the paper explores the significance of EREMI’s contributions to the field, emphasising the importance of resource efficiency and system optimisation in industrial settings. By addressing the challenges posed by under-digitised infrastructure, the project aims to drive sustainable and innovative practices in manufacturing. All five project partner organisations have been actively engaged in offering relevant educational content and framework for decentralised sustainable economic development in regional and national contexts through capacity building at a local level. A crucial element of the added value is the new channel for obtaining feedback from students. The survey results, which are outlined in the paper, offer valuable insights gathered from students, contributing to the continuous improvement of the project.
EREMI: An Innovative Interdisciplinary Approach for Higher Education in Resource Efficient Manufacturing Environments
Axel Sikora (author) / Tanya Titova-Kosturkova (author) / Gordana Janevska (author) / Mitko Kostov (author) / Simona Halunga (author) / George Suciu (author) / Georgi Georgiev (author)
2023
Article (Journal)
Electronic Resource
Unknown
higher education , resource efficiency , manufacturing industries , unique interdisciplinary international higher education approach , lifelong learning , quality feedback survey and results assessment , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
An innovative approach to introducing effective interdisciplinary education in Architecture
BASE | 2019
|Resource Typing - An Innovative Approach
British Library Conference Proceedings | 2014
|