A platform for research: civil engineering, architecture and urbanism
Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia
Kemiskinan telah menjadi masalah sosial dan tantangan bagi masyarakat di seluruh dunia yang terus dicari penyelesaiannya. Berdasarkan identifikasi dari Badan Program Pembangunan PBB (UNDP) yang bekerjasama dengan Oxford Poverty and Human Development Initiative (OPHI), 1.3 miliar penduduk dunia teridentifikasi sebagai penduduk miskin pada bulan September tahun 2018. Di tingkat nasional, Indonesia, tingkat kemiskinan tertinggi terjadi pada tahun 1999 dengan persentase sebesar 23.43%. Berdasarkan data dari Badan Pusat Statistik Indonesia (BPS), penduduk miskin di Indonesia mencapai 25.95 juta orang dengan persentase 9.82% pada tahun Maret 2018. Oleh karena itu penelitian ini bertujuan untuk menganalisis tingkat kemiskinan menggunakan dimensi dasar dari indeks pembangunan manusia (IPM) menggunakan metode data mining dan machine learning yakni algoritma J48 Decision Tree. Akurasi dari model prediksi yang telah dibuat menunjukan hasil yang baik yakni sebesar 88.6% dimana dengan kata lain model prediksi yang dikembangkan dapat digunakan untuk membantu para pembuat kebijakan maupun para pemangku kepentingan untuk mengambil keputusan. Kata kunci—Angka Kemiskinan, Indeks Pembangunan Manusia, Algoritma J48 Decision Tree, Data Mining, Machine Learning
Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia
Kemiskinan telah menjadi masalah sosial dan tantangan bagi masyarakat di seluruh dunia yang terus dicari penyelesaiannya. Berdasarkan identifikasi dari Badan Program Pembangunan PBB (UNDP) yang bekerjasama dengan Oxford Poverty and Human Development Initiative (OPHI), 1.3 miliar penduduk dunia teridentifikasi sebagai penduduk miskin pada bulan September tahun 2018. Di tingkat nasional, Indonesia, tingkat kemiskinan tertinggi terjadi pada tahun 1999 dengan persentase sebesar 23.43%. Berdasarkan data dari Badan Pusat Statistik Indonesia (BPS), penduduk miskin di Indonesia mencapai 25.95 juta orang dengan persentase 9.82% pada tahun Maret 2018. Oleh karena itu penelitian ini bertujuan untuk menganalisis tingkat kemiskinan menggunakan dimensi dasar dari indeks pembangunan manusia (IPM) menggunakan metode data mining dan machine learning yakni algoritma J48 Decision Tree. Akurasi dari model prediksi yang telah dibuat menunjukan hasil yang baik yakni sebesar 88.6% dimana dengan kata lain model prediksi yang dikembangkan dapat digunakan untuk membantu para pembuat kebijakan maupun para pemangku kepentingan untuk mengambil keputusan. Kata kunci—Angka Kemiskinan, Indeks Pembangunan Manusia, Algoritma J48 Decision Tree, Data Mining, Machine Learning
Penerapan Algoritma J48 Decision Tree Untuk Analisis Tingkat Kemiskinan di Indonesia
Fergie Joanda Kaunang (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI TINGKAT KEMISKINAN DI PROVINSI BANTEN
DOAJ | 2022
|Analisis Upaya Pemerintah Terhadap Tingkat Kemiskinan di Jawa Tengah Tahun 2020-2022
DOAJ | 2024
|