A platform for research: civil engineering, architecture and urbanism
Optimal Allocation of Water Resources Based on GWAS Model in Handan, China
Optimal allocation of water resources is an effective way to solve the supply and demand contradiction between water resources and water users. Recently, the rapid economic and social development of Handan has significantly increased water demand in various industries. Superimposed on the reduction of incoming water in upstream rivers and the limitation of the total amount of groundwater extraction, a large number of water sources such as South-to-North Water Diversion, Yellow River Water Diversion, and Weihe River Water Diversion are used to replace domestic and industrial water. In support of Handan’s dynamic supply and demand of water resources, the transported water was generalized as a virtual reservoir and introduced into the GWAS model. The allocation results show that the total water shortage volume and rate of Handan was 527.60 × 106 m3 and 17.92% in 2025 at a P = 50%, respectively. Water shortage was concentrated in the primary industry. The allocation results align with actual water use conditions. The allocation of transported water is more reasonable than the conventional allocation scheme, and the domestic water is completely replaced by the South-to-North Water Diversion in the eastern plain of Handan. These research results can provide a technical reference for water resource allocation in Handan.
Optimal Allocation of Water Resources Based on GWAS Model in Handan, China
Optimal allocation of water resources is an effective way to solve the supply and demand contradiction between water resources and water users. Recently, the rapid economic and social development of Handan has significantly increased water demand in various industries. Superimposed on the reduction of incoming water in upstream rivers and the limitation of the total amount of groundwater extraction, a large number of water sources such as South-to-North Water Diversion, Yellow River Water Diversion, and Weihe River Water Diversion are used to replace domestic and industrial water. In support of Handan’s dynamic supply and demand of water resources, the transported water was generalized as a virtual reservoir and introduced into the GWAS model. The allocation results show that the total water shortage volume and rate of Handan was 527.60 × 106 m3 and 17.92% in 2025 at a P = 50%, respectively. Water shortage was concentrated in the primary industry. The allocation results align with actual water use conditions. The allocation of transported water is more reasonable than the conventional allocation scheme, and the domestic water is completely replaced by the South-to-North Water Diversion in the eastern plain of Handan. These research results can provide a technical reference for water resource allocation in Handan.
Optimal Allocation of Water Resources Based on GWAS Model in Handan, China
Yun Luo (author) / Jinxia Sha (author) / Bin Liu (author) / Yinqin Zhang (author) / Jie Yang (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Application of AMOGWO in Multi-Objective Optimal Allocation of Water Resources in Handan, China
DOAJ | 2021
|Discussion on the Site Selection of Handan History Settlements
Trans Tech Publications | 2013
|Discussion on the Site Selection of Handan History Settlements
British Library Conference Proceedings | 2013
|