A platform for research: civil engineering, architecture and urbanism
Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum
To understand the molecular mechanism of drought tolerance in sweet sorghum [Sorghum bicolor (L.) Moench], we found the genetic loci associated with single nucleotide polymorphism (SNP) markers and explored drought-tolerance candidate genes. A genome-wide association study (GWAS) of sweet sorghum was performed using the general linear model (GLM), mixed linear model (MLM) and the fixed and random model circulating probability unification (FarmCPU) method in R. Mean productivity (MP), relative drought index (RDI) and stress-tolerance index (STI), based on plant height under two water treatments, were obtained from 354 sweet sorghum accessions from home and abroad. These plant-height drought-tolerance indices showed continuous quantitative variation. Except for the RDI, the others were close to normal distribution. A total of 6186 SNPs were obtained from the resequencing data after quality control and filling. The marker densities on chromosomes 9, 10 and 5 were higher than those on other chromosomes, which were 40.4, 16.5 and 10.0 SNPs within 1 Mb, respectively. The GWAS results showed that 49, 5 and 25 significant SNP loci were detected by the GLM, the MLM and FarmCPU, respectively, many of which were detected by two or more models. Two candidate genes of drought tolerance were annotated: Sb08g019720.1, homologous to the gene encoding the early flowering MYB protein transcription factor in Arabidopsis thaliana; and Sb01g037050.1, homologous to the gene encoding the basic leucine zipper transcription factor in maize. The results of this study can facilitate the cultivar development of drought-tolerant sweet sorghum.
Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum
To understand the molecular mechanism of drought tolerance in sweet sorghum [Sorghum bicolor (L.) Moench], we found the genetic loci associated with single nucleotide polymorphism (SNP) markers and explored drought-tolerance candidate genes. A genome-wide association study (GWAS) of sweet sorghum was performed using the general linear model (GLM), mixed linear model (MLM) and the fixed and random model circulating probability unification (FarmCPU) method in R. Mean productivity (MP), relative drought index (RDI) and stress-tolerance index (STI), based on plant height under two water treatments, were obtained from 354 sweet sorghum accessions from home and abroad. These plant-height drought-tolerance indices showed continuous quantitative variation. Except for the RDI, the others were close to normal distribution. A total of 6186 SNPs were obtained from the resequencing data after quality control and filling. The marker densities on chromosomes 9, 10 and 5 were higher than those on other chromosomes, which were 40.4, 16.5 and 10.0 SNPs within 1 Mb, respectively. The GWAS results showed that 49, 5 and 25 significant SNP loci were detected by the GLM, the MLM and FarmCPU, respectively, many of which were detected by two or more models. Two candidate genes of drought tolerance were annotated: Sb08g019720.1, homologous to the gene encoding the early flowering MYB protein transcription factor in Arabidopsis thaliana; and Sb01g037050.1, homologous to the gene encoding the basic leucine zipper transcription factor in maize. The results of this study can facilitate the cultivar development of drought-tolerant sweet sorghum.
Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum
Yue Xin (author) / Lina Gao (author) / Wenming Hu (author) / Qi Gao (author) / Bin Yang (author) / Jianguo Zhou (author) / Cuilian Xu (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Response of Maize Hybrids in Drought-Stress Using Drought Tolerance Indices
DOAJ | 2022
|Implementation of Rainfall-Based Drought Indices for Regional Drought Assessment
Springer Verlag | 2023
|