A platform for research: civil engineering, architecture and urbanism
Application of Saccharomyces cerevisiae in the Biosorption of Co(II), Zn(II) and Cu(II) Ions from Aqueous Media
Yeast biomass is considered a low-cost material that can be successfully used for the biosorption of metal ions from aqueous solution, due to its structural characteristics. This study evaluates the biosorptive performance of Saccharomyces cerevisiae in the biosorption of Co(II), Zn(II) and Cu(II) ions from aqueous media in batch mono-component systems. The influence of solution pH, biosorbent dose, contact time, temperature and initial metal ions concentration was examined step by step, to obtain the optimal conditions for biosorption experiments. Maximum uptake efficiency for all metal ions on this biosorbent was obtained at: pH = 5.0, 4.0 g biosorbent/L, room temperature of 23 °C, and a contact time of 60 min, and these were considered optimal. The equilibrium results were analyzed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models, while for the modeling of the kinetics data, three models (pseudo-first order, pseudo-second order and intra-particle diffusion) were used. Dubinin–Radushkevich isotherm model and the pseudo-second order model showed the best fit with the experimental data obtained at biosorption of Co(II), Zn(II) and Cu(II) ions on Saccharomyces cerevisiae. Both maximum biosorption capacities and pseudo-second rate constants follow the order: Co(II) > Zn(II) > Cu(II), suggesting that the structural particularities of metal ions are important in the biosorption processes. Based on the obtained equilibrium and kinetic parameters, the biosorption mechanism is analyzed and the possible applications are emphasized.
Application of Saccharomyces cerevisiae in the Biosorption of Co(II), Zn(II) and Cu(II) Ions from Aqueous Media
Yeast biomass is considered a low-cost material that can be successfully used for the biosorption of metal ions from aqueous solution, due to its structural characteristics. This study evaluates the biosorptive performance of Saccharomyces cerevisiae in the biosorption of Co(II), Zn(II) and Cu(II) ions from aqueous media in batch mono-component systems. The influence of solution pH, biosorbent dose, contact time, temperature and initial metal ions concentration was examined step by step, to obtain the optimal conditions for biosorption experiments. Maximum uptake efficiency for all metal ions on this biosorbent was obtained at: pH = 5.0, 4.0 g biosorbent/L, room temperature of 23 °C, and a contact time of 60 min, and these were considered optimal. The equilibrium results were analyzed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models, while for the modeling of the kinetics data, three models (pseudo-first order, pseudo-second order and intra-particle diffusion) were used. Dubinin–Radushkevich isotherm model and the pseudo-second order model showed the best fit with the experimental data obtained at biosorption of Co(II), Zn(II) and Cu(II) ions on Saccharomyces cerevisiae. Both maximum biosorption capacities and pseudo-second rate constants follow the order: Co(II) > Zn(II) > Cu(II), suggesting that the structural particularities of metal ions are important in the biosorption processes. Based on the obtained equilibrium and kinetic parameters, the biosorption mechanism is analyzed and the possible applications are emphasized.
Application of Saccharomyces cerevisiae in the Biosorption of Co(II), Zn(II) and Cu(II) Ions from Aqueous Media
Evgenia Savastru (author) / Dumitru Bulgariu (author) / Cătălin-Ioan Zamfir (author) / Laura Bulgariu (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae
Springer Verlag | 2011
|Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1
Taylor & Francis Verlag | 2011
|Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1
Online Contents | 2011
|