A platform for research: civil engineering, architecture and urbanism
Theorem of conjugate analogy is derived which generalizes conjugate beam method for bars, beams, and structures consisting of one-dimensional members of arbitrary shape (including curved bars) and with arbitrary supports, connections, and joints (including nonrigid ones); it also applies to thin-walled bars, for tension and shear, and for inelastic materials; it develops from analogy between geometry of small deformations and equilibrium condition which is presented in vectorial integral form; this analogy permits determination of deformations, deflection lines, influence lines, flexibility coefficients, as well as differential relations between deformations.
Theorem of conjugate analogy is derived which generalizes conjugate beam method for bars, beams, and structures consisting of one-dimensional members of arbitrary shape (including curved bars) and with arbitrary supports, connections, and joints (including nonrigid ones); it also applies to thin-walled bars, for tension and shear, and for inelastic materials; it develops from analogy between geometry of small deformations and equilibrium condition which is presented in vectorial integral form; this analogy permits determination of deformations, deflection lines, influence lines, flexibility coefficients, as well as differential relations between deformations.
Conjugate Analogy for Space Structures
ASCE -- Proc (J Structural Div)
Bazant, Z.P. (author)
1966
23 pages
Article (Journal)
English
© Metadata Copyright Elsevier B. V. All rights reserved.
Network analogy for linear structures
Engineering Index Backfile | 1963
|VOC emissions from diffusion-controlled building materials: analogy of conjugate heat transfer
British Library Conference Proceedings | 2000
|British Library Online Contents | 2008
|