A platform for research: civil engineering, architecture and urbanism
Performance optimization of the BIPV powered electrolyser and fuel cells installation
Highlights ► This is the first Canadian integrated solar powered electrolyser/fuel cell setup. ► Experimental research into interaction/integration of renewables and utility power. ► Complete installation performance is optimized to maximize hydrogen production. ► Voltage/current regulation during operation of the electrolyser is exceptional. ► Results obtained from the complete system operation have been excellent.
Abstract A practical multipurpose implementation of hybrid renewable energy system completely located within the building and including building integrated photovoltaic (BIPV) solar power energy source is presented. The system uses solar photovoltaic electricity generated by the building skin to produce hydrogen for fuel-cells, which in turn, when converted to energy in fuel cells, may be used to supply additional power to the building (or fuel cell vehicles) when solar power is not sufficient, for example at night or in periods of low insolation. Electricity generated from 8.2kWp BIPV array optimally supplies the electrolyser near the maximum power point level of the BIPV array. To further optimize hydrogen production, the electrolyser is connected to the local electrical utility, and DC power is provided to the electrolyser through a custom on-board DC power supply that supplements the BIPV array. Performance of the complete installation is optimized to provide continual production at the optimal efficiency level of hydrogen production at constant power. The results obtained from the system operation have shown excellent voltage and current regulation during operation of the electrolyser. The project shows the potential for development of similar building integrated hybrid systems elsewhere with possibilities for inclusion of additional renewable energy sources and added functionality.
Performance optimization of the BIPV powered electrolyser and fuel cells installation
Highlights ► This is the first Canadian integrated solar powered electrolyser/fuel cell setup. ► Experimental research into interaction/integration of renewables and utility power. ► Complete installation performance is optimized to maximize hydrogen production. ► Voltage/current regulation during operation of the electrolyser is exceptional. ► Results obtained from the complete system operation have been excellent.
Abstract A practical multipurpose implementation of hybrid renewable energy system completely located within the building and including building integrated photovoltaic (BIPV) solar power energy source is presented. The system uses solar photovoltaic electricity generated by the building skin to produce hydrogen for fuel-cells, which in turn, when converted to energy in fuel cells, may be used to supply additional power to the building (or fuel cell vehicles) when solar power is not sufficient, for example at night or in periods of low insolation. Electricity generated from 8.2kWp BIPV array optimally supplies the electrolyser near the maximum power point level of the BIPV array. To further optimize hydrogen production, the electrolyser is connected to the local electrical utility, and DC power is provided to the electrolyser through a custom on-board DC power supply that supplements the BIPV array. Performance of the complete installation is optimized to provide continual production at the optimal efficiency level of hydrogen production at constant power. The results obtained from the system operation have shown excellent voltage and current regulation during operation of the electrolyser. The project shows the potential for development of similar building integrated hybrid systems elsewhere with possibilities for inclusion of additional renewable energy sources and added functionality.
Performance optimization of the BIPV powered electrolyser and fuel cells installation
Stamenić, Ljubisav (author) / Rajković, Milan (author) / Klisić, Đorđe (author)
Energy and Buildings ; 51 ; 39-47
2012-03-25
9 pages
Article (Journal)
Electronic Resource
English
Performance optimization of the BIPV powered electrolyser and fuel cells installation
Online Contents | 2012
|Novel industrial building BIPV assembly installation technology
European Patent Office | 2023
|