A platform for research: civil engineering, architecture and urbanism
Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau
Abstract Most of the alpine tundra lakes, of average size 8,500m2, are widely spread in the Beiluhe Basin on the Qing-Tibet Plateau, where ice-rich permafrost exists. Approximately 70% of the lakes are elliptical in shape and 15% are elongated. About 80% of the lakes are unfrozen to the bottom throughout the year while a larger portion of it, about 60%, may be underlain by taliks that penetrate permafrost. The BLH-A Lake, a representative lake with 2-m deep water in the region, has been observed for about four years (from 2006 to 2009). Ice starts to cover on the lake-surface after mid-October, and its thickness increases to 60 to 70cm by the end of cold season. The ice cover then starts to melt in later April and melts completely around mid-May. The lake-surface temperatures change sinusoidally with the air temperatures, but lagging about half a month. The water warms with the increase of the water depth, and the maximum annual temperature appears at depth of 1.5m with a value of 14.3°C on July 30, 2007. The lake-bottom temperatures are not isothermal at different depths for most time of a year. It may be related to the variable climate, little snow, and intensive solar radiation. The mean annual lake-bottom temperatures are about 5.5°C in the deep pool with 2m deep water and 4.3°C in the shallow nearshore zone with 1m deep water. The warm lake-bottom causes considerable disturbance to the permafrost. Surveyed data show that there is no permafrost under the lake when the mean annual lake-bottom temperature is over 5°C.
Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau
Abstract Most of the alpine tundra lakes, of average size 8,500m2, are widely spread in the Beiluhe Basin on the Qing-Tibet Plateau, where ice-rich permafrost exists. Approximately 70% of the lakes are elliptical in shape and 15% are elongated. About 80% of the lakes are unfrozen to the bottom throughout the year while a larger portion of it, about 60%, may be underlain by taliks that penetrate permafrost. The BLH-A Lake, a representative lake with 2-m deep water in the region, has been observed for about four years (from 2006 to 2009). Ice starts to cover on the lake-surface after mid-October, and its thickness increases to 60 to 70cm by the end of cold season. The ice cover then starts to melt in later April and melts completely around mid-May. The lake-surface temperatures change sinusoidally with the air temperatures, but lagging about half a month. The water warms with the increase of the water depth, and the maximum annual temperature appears at depth of 1.5m with a value of 14.3°C on July 30, 2007. The lake-bottom temperatures are not isothermal at different depths for most time of a year. It may be related to the variable climate, little snow, and intensive solar radiation. The mean annual lake-bottom temperatures are about 5.5°C in the deep pool with 2m deep water and 4.3°C in the shallow nearshore zone with 1m deep water. The warm lake-bottom causes considerable disturbance to the permafrost. Surveyed data show that there is no permafrost under the lake when the mean annual lake-bottom temperature is over 5°C.
Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau
Lin, Zhanju (author) / Niu, Fujun (author) / Liu, Hua (author) / Lu, Jiahao (author)
Cold Regions, Science and Technology ; 65 ; 446-455
2010-10-24
10 pages
Article (Journal)
Electronic Resource
English
Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau
Online Contents | 2011
|Structural analysis of thermokarst lake ice in Beiluhe Basin, Qinghai–Tibet Plateau
Online Contents | 2012
|Effective thermal conductivity of thermokarst lake ice in Beiluhe Basin, Qinghai-Tibet Plateau
Online Contents | 2013
|