A platform for research: civil engineering, architecture and urbanism
Sources of fine particles in the South Coast area, California
AbstractPM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data (Kim and Hopke, 2007a), secondary particles contributed the most to the PM2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased.To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF (US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications.
Sources of fine particles in the South Coast area, California
AbstractPM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data (Kim and Hopke, 2007a), secondary particles contributed the most to the PM2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased.To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF (US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications.
Sources of fine particles in the South Coast area, California
Kim, Eugene (author) / Turkiewicz, Katarzyna (author) / Zulawnick, Sylvia A. (author) / Magliano, Karen L. (author)
Atmospheric Environment ; 44 ; 3095-3100
2010-05-20
6 pages
Article (Journal)
Electronic Resource
English
Multiple Scenario Urban Forecasting for the California South Coast Region
British Library Conference Proceedings | 2002
|Modernize California coast highway
Engineering Index Backfile | 1948
|