A platform for research: civil engineering, architecture and urbanism
The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete
Abstract This paper evaluates the LECA Lightweight Self-Compacting Concrete (LLSCC) manufactured by Nan-Su, of which the Packing Factor (PF) of its design mixing method has been modified and improved. The study analyzes the impact of polypropylene fibers on LLSCC performance at its fresh condition as well as its mechanical properties at the hardened condition. The evaluation of Fiber Reinforced LLSCC (FR-LLSCC) fluidity has been conducted per the standard of second class rating of JSCE, by three categories of flowability, segregation resistance ability and filling ability of fresh concrete. For the mechanical properties of LLSCC, the study has been conducted as follows: compressive strength with elapsed age, splitting tensile strength, elastic modulus and flexural strength, all of which were measured after the sample being cured for 28days. When self-compacting concretes were lightened to 75% of their normal weight, their fresh properties are affected immensely. Applying 0.3% volume fractions of polypropylene fiber to the LLSCC resulted in 40% reduction in the slump flow (from 720mm to 430mm). In general, the rate of slump flow over Super Plasticizer (SP) volume percentage reduced with the use of polypropylene fibers in the FR-LLSC. Polypropylene fibers did not influence the compressive strength and elastic modulus of LLSCC, however applying these fibers at their maximum percentage volume determined through this study, increased the tensile strength by 14.4% in the splitting tensile strength test, and 10.7% in the flexural strength.
The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete
Abstract This paper evaluates the LECA Lightweight Self-Compacting Concrete (LLSCC) manufactured by Nan-Su, of which the Packing Factor (PF) of its design mixing method has been modified and improved. The study analyzes the impact of polypropylene fibers on LLSCC performance at its fresh condition as well as its mechanical properties at the hardened condition. The evaluation of Fiber Reinforced LLSCC (FR-LLSCC) fluidity has been conducted per the standard of second class rating of JSCE, by three categories of flowability, segregation resistance ability and filling ability of fresh concrete. For the mechanical properties of LLSCC, the study has been conducted as follows: compressive strength with elapsed age, splitting tensile strength, elastic modulus and flexural strength, all of which were measured after the sample being cured for 28days. When self-compacting concretes were lightened to 75% of their normal weight, their fresh properties are affected immensely. Applying 0.3% volume fractions of polypropylene fiber to the LLSCC resulted in 40% reduction in the slump flow (from 720mm to 430mm). In general, the rate of slump flow over Super Plasticizer (SP) volume percentage reduced with the use of polypropylene fibers in the FR-LLSC. Polypropylene fibers did not influence the compressive strength and elastic modulus of LLSCC, however applying these fibers at their maximum percentage volume determined through this study, increased the tensile strength by 14.4% in the splitting tensile strength test, and 10.7% in the flexural strength.
The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete
Mazaheripour, H. (author) / Ghanbarpour, S. (author) / Mirmoradi, S.H. (author) / Hosseinpour, I. (author)
Construction and Building Materials ; 25 ; 351-358
2010-06-07
8 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2011
|British Library Online Contents | 2016
|