A platform for research: civil engineering, architecture and urbanism
A numerical investigation of local–overall interaction buckling of stainless steel lipped channel columns
AbstractA detailed finite element (FE) model is presented, which was developed with the aim of studying the interaction of local and overall buckling in stainless steel columns. The model incorporates non-linear stress–strain behaviour, anisotropy, enhanced corner properties and initial imperfections. The model was verified against a program of 29 laboratory tests on stainless steel lipped channels, described in a companion paper [Becque J, Rasmussen KJR. Experimental investigation of the interaction of local and overall buckling of stainless steel lipped channel columns. Journal of Constructional Steel Research 2009; 65(8–9): 1677–84] and yielded excellent predictions of ultimate strength and specimen behaviour.The FE model was further used in parametric studies, varying both the cross-sectional slenderness and the overall slenderness. Three stainless steel alloys were considered: AISI304, AISI430 and 3Cr12. The results are compared with the governing design rules of the Australian, North American and European standards for stainless steel structures.
A numerical investigation of local–overall interaction buckling of stainless steel lipped channel columns
AbstractA detailed finite element (FE) model is presented, which was developed with the aim of studying the interaction of local and overall buckling in stainless steel columns. The model incorporates non-linear stress–strain behaviour, anisotropy, enhanced corner properties and initial imperfections. The model was verified against a program of 29 laboratory tests on stainless steel lipped channels, described in a companion paper [Becque J, Rasmussen KJR. Experimental investigation of the interaction of local and overall buckling of stainless steel lipped channel columns. Journal of Constructional Steel Research 2009; 65(8–9): 1677–84] and yielded excellent predictions of ultimate strength and specimen behaviour.The FE model was further used in parametric studies, varying both the cross-sectional slenderness and the overall slenderness. Three stainless steel alloys were considered: AISI304, AISI430 and 3Cr12. The results are compared with the governing design rules of the Australian, North American and European standards for stainless steel structures.
A numerical investigation of local–overall interaction buckling of stainless steel lipped channel columns
Becque, Jurgen (author) / Rasmussen, Kim J.R. (author)
Journal of Constructional Steel Research ; 65 ; 1685-1693
2009-04-30
9 pages
Article (Journal)
Electronic Resource
English