A platform for research: civil engineering, architecture and urbanism
Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin
Abstract In this study, quasi-UFP (PM0.25, dp < 0.25 μm) were collected for 24 h once per week from April 2008 to March 2009 at 10 different locations in the Los Angeles Basin. Samples were chemically analyzed and organic constituents of PM0.25 were grouped into polycyclic aromatic hydrocarbon (PAHs), hopanes and steranes, n-alkanes, and levoglucosan, with concentration levels ranging from 0.16 to 5.5, 0.09 to 2.2, 9.3 to 48, and 2.2 to 106.2 ng m−3 over all sites and seasons, respectively. A molecular marker-based chemical mass balance (MM-CMB) model was applied to estimate the relative contributions from the following primary sources: mobile sources (combined gasoline and diesel vehicles), wood smoke, natural gas combustion, vegetative detritus, and ship emissions. Secondary organic aerosol (SOA) tracers were not included in the model; however their contributions were estimated from non-biomass burning water soluble organic carbon (WSOCnb) and un-apportioned OC from MM-CMB model (“other OC”). High correlation (R 2 = 0.8) between “other OC” and WSOCnb in summer suggests that “other OC” is highly impacted by SOA, however un-apportioned primary sources may contribute to “other OC” as well. Mobile sources were expectedly the major primary contributor to PM0.25, with seasonal average contributions of 31 ± 12% in summer and 57 ± 17% in winter. “Other organic matter” was the second largest contributor to PM0.25 in all seasons, across the basin, with substantially higher contribution during warmer spring and summer seasons (27%), while lowest during cold seasons (13%). Wood smoke was the third major contributor to PM0.25 in winter, whereas its contribution was lowest in summer. As expected, ship emissions displayed the highest contribution at the near-harbor HUD site, and their levels continually decreased as a function of distance from coast. Two other primary sources, vegetative detritus and natural gas combustion, collectively contributed to 1.3 ± 0.8% of PM0.25 on an annual average basis over all sites. Comparison of our results to PM2.5 OC apportionment, conducted at central LA, shows that contribution of mobile sources to PM0.25 OC is more than two times higher than PM2.5 (75% and 30%, respectively), while “other OC” contributed significantly higher to PM2.5 OC compared to PM0.25 (56% and 21%, respectively).
Highlights Source apportionment of UFP in 10 different sites in the Los Angeles Basin. Molecular marker-based chemical mass balance model is used. Mobile sources are the dominant contributors to ultrafine particles. Organic compounds show significant seasonal and spatial variability.
Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin
Abstract In this study, quasi-UFP (PM0.25, dp < 0.25 μm) were collected for 24 h once per week from April 2008 to March 2009 at 10 different locations in the Los Angeles Basin. Samples were chemically analyzed and organic constituents of PM0.25 were grouped into polycyclic aromatic hydrocarbon (PAHs), hopanes and steranes, n-alkanes, and levoglucosan, with concentration levels ranging from 0.16 to 5.5, 0.09 to 2.2, 9.3 to 48, and 2.2 to 106.2 ng m−3 over all sites and seasons, respectively. A molecular marker-based chemical mass balance (MM-CMB) model was applied to estimate the relative contributions from the following primary sources: mobile sources (combined gasoline and diesel vehicles), wood smoke, natural gas combustion, vegetative detritus, and ship emissions. Secondary organic aerosol (SOA) tracers were not included in the model; however their contributions were estimated from non-biomass burning water soluble organic carbon (WSOCnb) and un-apportioned OC from MM-CMB model (“other OC”). High correlation (R 2 = 0.8) between “other OC” and WSOCnb in summer suggests that “other OC” is highly impacted by SOA, however un-apportioned primary sources may contribute to “other OC” as well. Mobile sources were expectedly the major primary contributor to PM0.25, with seasonal average contributions of 31 ± 12% in summer and 57 ± 17% in winter. “Other organic matter” was the second largest contributor to PM0.25 in all seasons, across the basin, with substantially higher contribution during warmer spring and summer seasons (27%), while lowest during cold seasons (13%). Wood smoke was the third major contributor to PM0.25 in winter, whereas its contribution was lowest in summer. As expected, ship emissions displayed the highest contribution at the near-harbor HUD site, and their levels continually decreased as a function of distance from coast. Two other primary sources, vegetative detritus and natural gas combustion, collectively contributed to 1.3 ± 0.8% of PM0.25 on an annual average basis over all sites. Comparison of our results to PM2.5 OC apportionment, conducted at central LA, shows that contribution of mobile sources to PM0.25 OC is more than two times higher than PM2.5 (75% and 30%, respectively), while “other OC” contributed significantly higher to PM2.5 OC compared to PM0.25 (56% and 21%, respectively).
Highlights Source apportionment of UFP in 10 different sites in the Los Angeles Basin. Molecular marker-based chemical mass balance model is used. Mobile sources are the dominant contributors to ultrafine particles. Organic compounds show significant seasonal and spatial variability.
Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin
Hasheminassab, Sina (author) / Daher, Nancy (author) / Schauer, James J. (author) / Sioutas, Constantinos (author)
Atmospheric Environment ; 79 ; 529-539
2013-07-16
11 pages
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2012
|