A platform for research: civil engineering, architecture and urbanism
Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell
Abstract This is the first research on the nonlinear vibration analysis of composite sandwich doubly curved shell with a flexible core integrated with a piezoelectric layer. By using the higher order shear deformable theory (HSDT) for the face sheets and the third-order polynomial theory for the flexible core, the strains and stresses are obtained. It is assumed a smart model including multiscale composite layers shell with a flexible core and magnetorheological layer (MR) that leading up by the nonlinearity of the in-plane and the vertical displacements of the core. Three-phase composites shells with polymer/Carbon nanotube/fiber (PCF) and polymer/Graphene platelet/fiber (PGF) and Shape Memory Alloy (SMA)/matrix either according to Halpin-Tsai model have been considered. The governing equations of multiscale shell have been derived by implementing Hamilton's principle and solved by multiple scale method. For investigating the correctness and accuracy, this paper is validated by other previous researches. Finally, the effect of different parameters such as temperature rise, various distributions pattern, magnetic fields and curvature ratio are explored in detail.
Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell
Abstract This is the first research on the nonlinear vibration analysis of composite sandwich doubly curved shell with a flexible core integrated with a piezoelectric layer. By using the higher order shear deformable theory (HSDT) for the face sheets and the third-order polynomial theory for the flexible core, the strains and stresses are obtained. It is assumed a smart model including multiscale composite layers shell with a flexible core and magnetorheological layer (MR) that leading up by the nonlinearity of the in-plane and the vertical displacements of the core. Three-phase composites shells with polymer/Carbon nanotube/fiber (PCF) and polymer/Graphene platelet/fiber (PGF) and Shape Memory Alloy (SMA)/matrix either according to Halpin-Tsai model have been considered. The governing equations of multiscale shell have been derived by implementing Hamilton's principle and solved by multiple scale method. For investigating the correctness and accuracy, this paper is validated by other previous researches. Finally, the effect of different parameters such as temperature rise, various distributions pattern, magnetic fields and curvature ratio are explored in detail.
Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell
Karimiasl, Mahsa (author) / Ebrahimi, Farzad (author) / Mahesh, Vinyas (author)
Thin-Walled Structures ; 143
2019-04-24
Article (Journal)
Electronic Resource
English
Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels
Online Contents | 2014
|Modal analysis of FG sandwich doubly curved shell structure
British Library Online Contents | 2018
|