A platform for research: civil engineering, architecture and urbanism
Site response analyses using downhole arrays at various seismic hazard levels of Singapore
Abstract Local site conditions can significantly influence the characteristics of seismic ground motions. In this study, site response analyses using one-dimensional linear elastic (LE), equivalent-linear (EQL) and nonlinear (NL) approaches are performed at different seismic hazard levels of Singapore. Two seismic stations, namely, the KAP and BES stations located at soft soil sites, are selected from the national network of Singapore. Firstly, site response estimates using the LE, EQL (SHAKE04) and NL (DEEPSOIL) approaches are compared with the borehole recordings. Results show favorable matches between the predictions and the observations at the KAP site, while under-predictions are observed for all the three site effect approaches at the BES site. Secondly, the applicability of the LE, EQL and NL models is examined at different hazard levels of Singapore. It is found that for the hazard level at a return period of 475 years, the computed maximum strain (γmax) is 0.06% and then the EQL model can provide accurate site response predictions. However, for the hazard level at a return period of 2475 years, the calculated γmax is larger than 2%, resulting in notable differences in the predictions of different site response models. This study highlights the importance of site effects in seismic hazard analysis of Singapore.
Site response analyses using downhole arrays at various seismic hazard levels of Singapore
Abstract Local site conditions can significantly influence the characteristics of seismic ground motions. In this study, site response analyses using one-dimensional linear elastic (LE), equivalent-linear (EQL) and nonlinear (NL) approaches are performed at different seismic hazard levels of Singapore. Two seismic stations, namely, the KAP and BES stations located at soft soil sites, are selected from the national network of Singapore. Firstly, site response estimates using the LE, EQL (SHAKE04) and NL (DEEPSOIL) approaches are compared with the borehole recordings. Results show favorable matches between the predictions and the observations at the KAP site, while under-predictions are observed for all the three site effect approaches at the BES site. Secondly, the applicability of the LE, EQL and NL models is examined at different hazard levels of Singapore. It is found that for the hazard level at a return period of 475 years, the computed maximum strain (γmax) is 0.06% and then the EQL model can provide accurate site response predictions. However, for the hazard level at a return period of 2475 years, the calculated γmax is larger than 2%, resulting in notable differences in the predictions of different site response models. This study highlights the importance of site effects in seismic hazard analysis of Singapore.
Site response analyses using downhole arrays at various seismic hazard levels of Singapore
Du, Wenqi (author) / Pan, Tso-Chien (author)
Soil Dynamics and Earthquake Engineering ; 90 ; 169-182
2016-08-24
14 pages
Article (Journal)
Electronic Resource
English
Site response analyses using downhole arrays at various seismic hazard levels of Singapore
British Library Online Contents | 2016
|Site response analyses using downhole arrays at various seismic hazard levels of Singapore
Online Contents | 2016
|Analyses of site liquefaction using downhole array seismic records
British Library Conference Proceedings | 1996
|