A platform for research: civil engineering, architecture and urbanism
Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks
Abstract Scrap tyres are a significant source of pollution and pose a grave threat to the environment and human health. The present study aims to examine the application of Tyre Derived Aggregate (TDA) in a concrete slab track and ballasted track and compare its performance in both track forms. In this study, long-term performance of slab track and ballasted track subjected to train induced loading is demonstrated based on the three-dimensional finite element modelling. The most suitable constitutive hyperelastic model for TDA has been identified. Subsequently, the most suitable position for the location of TDA is determined for both track types. A comparative analysis between slab track and ballasted track, with and without TDA, is presented in terms of stress transfer, vibration reduction and displacement (elastic and plastic). It is shown that TDA helps in reducing up to 50% vibration levels of both track types. The influence of train speed and axle load on the vertical and horizontal displacement and stress response of both track forms is shown for a large number of load cycles. Overall, it is observed that the long-term performance of TDA is better in slab track compared to ballasted track.
Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks
Abstract Scrap tyres are a significant source of pollution and pose a grave threat to the environment and human health. The present study aims to examine the application of Tyre Derived Aggregate (TDA) in a concrete slab track and ballasted track and compare its performance in both track forms. In this study, long-term performance of slab track and ballasted track subjected to train induced loading is demonstrated based on the three-dimensional finite element modelling. The most suitable constitutive hyperelastic model for TDA has been identified. Subsequently, the most suitable position for the location of TDA is determined for both track types. A comparative analysis between slab track and ballasted track, with and without TDA, is presented in terms of stress transfer, vibration reduction and displacement (elastic and plastic). It is shown that TDA helps in reducing up to 50% vibration levels of both track types. The influence of train speed and axle load on the vertical and horizontal displacement and stress response of both track forms is shown for a large number of load cycles. Overall, it is observed that the long-term performance of TDA is better in slab track compared to ballasted track.
Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks
Farooq, Mohammad Adnan (author) / Nimbalkar, Sanjay (author) / Fatahi, Behzad (author)
2021-01-01
Article (Journal)
Electronic Resource
English
UB Braunschweig | 2018
|Finite Element Modelling of Geogrids Reinforced Ballasted Tracks
Springer Verlag | 2024
|Finite Element Modelling of Geogrids Reinforced Ballasted Tracks
Springer Verlag | 2024
|