A platform for research: civil engineering, architecture and urbanism
Sources and sinks of carbon dioxide in a neighborhood of Mexico City
Abstract Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. These uncertainties might lead to unsound mitigation policies. Monitoring systems of greenhouse gases (GHG) based on independent methods are needed to validate the accuracy of the estimated emissions. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance (EC) method with emissions taken from the gridded local emissions inventory for the footprint covered by the EC flux system for a residential/commercial neighborhood of Mexico City. The flux measurements were conducted over 15-month period. No seasonal variability was found, but a clear diurnal pattern with morning and evening peaks in phase with the rush-hour traffic was observed. After adding contributions from human and soil respiration obtained by bottom-up approaches, and subtracting the CO2 sequestrated by vegetation calculated by applying biomass allometric equations and a growth predictive model to trees inventoried within the studied domain, results show that the current emissions inventory over-predicts 2.8 times the average daily flux measured on weekdays. Using traffic emissions data from a 2-year older inventory the difference decreased to 30%, suggesting that the traffic load for this part of the city is probably highly overestimated in the current emissions inventory. This study is expected to contribute to the verification capabilities of the GHG mitigation management of Mexico City, and to serve as a reference for other subtropical cities with similar urbanization patterns.
Highlights 15 months of CO2 exchange over a neighborhood of Mexico City are analyzed. No seasonal variability was found, but a clear diurnal pattern was observed. Eddy covariance CO2 fluxes are an alternative to evaluate emission inventories. Effective action plans need a good understanding of all emission sources and sinks. Valuable data to understand urbanization influences on biogeochemical cycles.
Sources and sinks of carbon dioxide in a neighborhood of Mexico City
Abstract Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. These uncertainties might lead to unsound mitigation policies. Monitoring systems of greenhouse gases (GHG) based on independent methods are needed to validate the accuracy of the estimated emissions. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance (EC) method with emissions taken from the gridded local emissions inventory for the footprint covered by the EC flux system for a residential/commercial neighborhood of Mexico City. The flux measurements were conducted over 15-month period. No seasonal variability was found, but a clear diurnal pattern with morning and evening peaks in phase with the rush-hour traffic was observed. After adding contributions from human and soil respiration obtained by bottom-up approaches, and subtracting the CO2 sequestrated by vegetation calculated by applying biomass allometric equations and a growth predictive model to trees inventoried within the studied domain, results show that the current emissions inventory over-predicts 2.8 times the average daily flux measured on weekdays. Using traffic emissions data from a 2-year older inventory the difference decreased to 30%, suggesting that the traffic load for this part of the city is probably highly overestimated in the current emissions inventory. This study is expected to contribute to the verification capabilities of the GHG mitigation management of Mexico City, and to serve as a reference for other subtropical cities with similar urbanization patterns.
Highlights 15 months of CO2 exchange over a neighborhood of Mexico City are analyzed. No seasonal variability was found, but a clear diurnal pattern was observed. Eddy covariance CO2 fluxes are an alternative to evaluate emission inventories. Effective action plans need a good understanding of all emission sources and sinks. Valuable data to understand urbanization influences on biogeochemical cycles.
Sources and sinks of carbon dioxide in a neighborhood of Mexico City
Velasco, E. (author) / Perrusquia, R. (author) / Jiménez, E. (author) / Hernández, F. (author) / Camacho, P. (author) / Rodríguez, S. (author) / Retama, A. (author) / Molina, L.T. (author)
Atmospheric Environment ; 97 ; 226-238
2014-08-08
13 pages
Article (Journal)
Electronic Resource
English
Steps Towards Integrating Carbon Dioxide Sources and Sinks into Local Environmental Planning
British Library Online Contents | 2003
|TIBKAT | 2020
|Carbon sinks and sources in China's forests during 1901–2001
Online Contents | 2007
|An Approach to Litter Generation and Littering Practices in a Mexico City Neighborhood
DOAJ | 2012
|