A platform for research: civil engineering, architecture and urbanism
Investigation of natural rock joint roughness
Abstract The paper provides a comprehensive review on rock joint roughness measurement and quantification procedures. Superiority of fractal based methods over JRC, statistical parameters and statistical functions in quantifying roughness is discussed in the paper. Two of the best fractal based methodologies available in the literature, the modified 2-D divider and variogram methods, are used to quantify natural rock joint roughness in 3-D and 2-D, respectively. The capability of these two methods in accurate quantification of natural rock joint roughness is shown in the paper by applying the procedures to four natural rock joints. A good comparison has been obtained from the values obtained through the two methods. Both these methodologies have two parameters to capture the stationary roughness. The fractal dimension captures the spatial auto correlation of roughness; the other parameter captures the amplitude of roughness. Anisotropic roughness has been studied by applying two other methodologies: (a) a triangular plate methodology and (b) a light source methodology to the same four natural rock joints. A reasonably good comparison has been obtained through the results of these two methodologies. All four roughness quantification methodologies can be applied to any size of sample covering from laboratory to field scales. The results of the triangular plate and light source methodologies provided possible sliding direction values (under the gravitational loading) close to that reported in the literature for the rough discontinuity planes used in the study.
Investigation of natural rock joint roughness
Abstract The paper provides a comprehensive review on rock joint roughness measurement and quantification procedures. Superiority of fractal based methods over JRC, statistical parameters and statistical functions in quantifying roughness is discussed in the paper. Two of the best fractal based methodologies available in the literature, the modified 2-D divider and variogram methods, are used to quantify natural rock joint roughness in 3-D and 2-D, respectively. The capability of these two methods in accurate quantification of natural rock joint roughness is shown in the paper by applying the procedures to four natural rock joints. A good comparison has been obtained from the values obtained through the two methods. Both these methodologies have two parameters to capture the stationary roughness. The fractal dimension captures the spatial auto correlation of roughness; the other parameter captures the amplitude of roughness. Anisotropic roughness has been studied by applying two other methodologies: (a) a triangular plate methodology and (b) a light source methodology to the same four natural rock joints. A reasonably good comparison has been obtained through the results of these two methodologies. All four roughness quantification methodologies can be applied to any size of sample covering from laboratory to field scales. The results of the triangular plate and light source methodologies provided possible sliding direction values (under the gravitational loading) close to that reported in the literature for the rough discontinuity planes used in the study.
Investigation of natural rock joint roughness
Ge, Yunfeng (author) / Kulatilake, Pinnaduwa H.S.W. (author) / Tang, Huiming (author) / Xiong, Chengren (author)
Computers and Geotechnics ; 55 ; 290-305
2013-09-21
16 pages
Article (Journal)
Electronic Resource
English
Investigation of natural rock joint roughness
Online Contents | 2014
|Natural rock joint roughness quantification through fractal techniques
British Library Online Contents | 2006
|Evolution Process of Natural Rock Joint Roughness during Direct Shear Tests
Online Contents | 2017
|Fractal Characterization of Rock Joint Roughness
British Library Conference Proceedings | 1996
|Evolution Process of Natural Rock Joint Roughness during Direct Shear Tests
Online Contents | 2016
|