A platform for research: civil engineering, architecture and urbanism
Flexural and shear capacities of concrete beams reinforced with GFRP bars
AbstractThis paper reports test results of 12 concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars subjected to a four point loading system. All test specimens had no transverse shear nor compression reinforcement and were classified into two groups according to the concrete compressive strength. The main parameters investigated in each group were the beam depth and amount of GFRP reinforcement. Two modes of failure were observed, namely flexural and shear. The flexural failure is mainly occurred due to tensile rupture of GFRP bars either within the mid-span region or under the applied point load. The shear failure is initiated by a major diagonal crack within the beam shear span. This diagonal crack extended horizontally at the level of the GFRP bars indicating bond failure.Simplified methods for estimating the flexural and shear capacities of beams tested are presented. The flexural capacity is estimated based on the compatibility of strains and equilibrium of forces. Comparisons between the flexural capacity obtained from the theoretical analysis and that experimentally measured in the current investigation and elsewhere show good agreement. To predict the shear capacity of the beams tested, four methods recently proposed in the literature for GFRP-reinforced concrete beams are used. These methods have been developed by modifying the ACI 318-99 shear capacity formula for steel-reinforced concrete beams to account for the difference in the axial stiffness of GFRP and steel bars. It has been shown that the theoretical predictions of the shear capacity obtained from these methods are inconsistent and further research needs to be carried out in order to establish a rational method for the shear capacity calculation of GFRP-reinforced concrete beams.
Flexural and shear capacities of concrete beams reinforced with GFRP bars
AbstractThis paper reports test results of 12 concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars subjected to a four point loading system. All test specimens had no transverse shear nor compression reinforcement and were classified into two groups according to the concrete compressive strength. The main parameters investigated in each group were the beam depth and amount of GFRP reinforcement. Two modes of failure were observed, namely flexural and shear. The flexural failure is mainly occurred due to tensile rupture of GFRP bars either within the mid-span region or under the applied point load. The shear failure is initiated by a major diagonal crack within the beam shear span. This diagonal crack extended horizontally at the level of the GFRP bars indicating bond failure.Simplified methods for estimating the flexural and shear capacities of beams tested are presented. The flexural capacity is estimated based on the compatibility of strains and equilibrium of forces. Comparisons between the flexural capacity obtained from the theoretical analysis and that experimentally measured in the current investigation and elsewhere show good agreement. To predict the shear capacity of the beams tested, four methods recently proposed in the literature for GFRP-reinforced concrete beams are used. These methods have been developed by modifying the ACI 318-99 shear capacity formula for steel-reinforced concrete beams to account for the difference in the axial stiffness of GFRP and steel bars. It has been shown that the theoretical predictions of the shear capacity obtained from these methods are inconsistent and further research needs to be carried out in order to establish a rational method for the shear capacity calculation of GFRP-reinforced concrete beams.
Flexural and shear capacities of concrete beams reinforced with GFRP bars
Ashour, A.F. (author)
Construction and Building Materials ; 20 ; 1005-1015
2005-06-15
11 pages
Article (Journal)
Electronic Resource
English
Flexural and shear capacities of concrete beams reinforced with GFRP bars
British Library Online Contents | 2006
|Flexural and shear capacities of concrete beams reinforced with GFRP bars
Online Contents | 2006
|Flexural behaviour of concrete beams reinforced with GFRP bars
Online Contents | 1998
|Flexural Behaviour of Lightweight Foamed Concrete Beams Reinforced with GFRP Bars
BASE | 2018
|Flexural Behavior and Cracks in Concrete Beams Reinforced with GFRP Bars
Springer Verlag | 2018
|