A platform for research: civil engineering, architecture and urbanism
Experimental and numerical investigations of press-braked stainless steel channel section beam-columns
Abstract The buckling behaviour and resistances of press-braked stainless steel channel section beam-columns under combined compression and minor-axis bending have been studied in the present paper through laboratory testing and numerical modelling. The testing programme adopted two press-braked stainless steel channel sections and included initial global and local geometric imperfection measurements and ten beam-column tests. Two types of failure mode, namely ‘C’-orientation buckling (indicating that failure specimens buckled towards the web) and ‘reverse C’-orientation buckling (signifying that failure specimens buckled towards the flange tips), were observed upon testing. The testing programme was followed by a numerical modelling programme; finite element models were developed and validated against the test results and then adopted to perform parametric studies to generate further numerical data on press-braked stainless steel channel section beam-columns over a wide range of cross-section dimensions, member effective lengths and loading combinations. The obtained experimental and numerical data were employed to assess the accuracy and consistency of the relevant codified design rules for press-braked stainless steel channel section beam-columns, as given in the European code, American specification and Australian/New Zealand standard. The results of assessment revealed that the European code yields many unsafe resistance predictions for Class 1 and 2 press-braked stainless steel channel section beam-columns but overly conservative resistance predictions for Class 3 press-braked stainless steel channel section beam-columns, although the resulting overall design accuracy is good, but with a high level of scatter of the resistance predictions. Compared with the European code, the American specification and Australian/New Zealand standard result in slightly more accurate resistance predictions for press-braked stainless steel channel section beam-columns with buckling in the ‘C’ orientation, but lead to significantly more conservative predicted resistances for press-braked stainless steel channel section beam-columns with buckling in the ‘reverse C’ orientation. In terms of the design consistency, the American specification and Australian/New Zealand standard were shown to result in more consistent resistance predictions (regardless of cross-section dimensions and buckling orientations) than their Eurocode counterpart.
Highlights The buckling behaviour and resistances of press-braked stainless steel channel section beam-columns were studied. Ten press-braked stainless steel channel section beam-column tests were performed. FE models were developed and validated against the test results and then employed to conduct parametric studies. The codified design interaction formulae were evaluated, based on the test and FE results.
Experimental and numerical investigations of press-braked stainless steel channel section beam-columns
Abstract The buckling behaviour and resistances of press-braked stainless steel channel section beam-columns under combined compression and minor-axis bending have been studied in the present paper through laboratory testing and numerical modelling. The testing programme adopted two press-braked stainless steel channel sections and included initial global and local geometric imperfection measurements and ten beam-column tests. Two types of failure mode, namely ‘C’-orientation buckling (indicating that failure specimens buckled towards the web) and ‘reverse C’-orientation buckling (signifying that failure specimens buckled towards the flange tips), were observed upon testing. The testing programme was followed by a numerical modelling programme; finite element models were developed and validated against the test results and then adopted to perform parametric studies to generate further numerical data on press-braked stainless steel channel section beam-columns over a wide range of cross-section dimensions, member effective lengths and loading combinations. The obtained experimental and numerical data were employed to assess the accuracy and consistency of the relevant codified design rules for press-braked stainless steel channel section beam-columns, as given in the European code, American specification and Australian/New Zealand standard. The results of assessment revealed that the European code yields many unsafe resistance predictions for Class 1 and 2 press-braked stainless steel channel section beam-columns but overly conservative resistance predictions for Class 3 press-braked stainless steel channel section beam-columns, although the resulting overall design accuracy is good, but with a high level of scatter of the resistance predictions. Compared with the European code, the American specification and Australian/New Zealand standard result in slightly more accurate resistance predictions for press-braked stainless steel channel section beam-columns with buckling in the ‘C’ orientation, but lead to significantly more conservative predicted resistances for press-braked stainless steel channel section beam-columns with buckling in the ‘reverse C’ orientation. In terms of the design consistency, the American specification and Australian/New Zealand standard were shown to result in more consistent resistance predictions (regardless of cross-section dimensions and buckling orientations) than their Eurocode counterpart.
Highlights The buckling behaviour and resistances of press-braked stainless steel channel section beam-columns were studied. Ten press-braked stainless steel channel section beam-column tests were performed. FE models were developed and validated against the test results and then employed to conduct parametric studies. The codified design interaction formulae were evaluated, based on the test and FE results.
Experimental and numerical investigations of press-braked stainless steel channel section beam-columns
Zhang, Lulu (author) / Li, Shuai (author) / Tan, Kang Hai (author) / Zhao, Ou (author)
Thin-Walled Structures ; 161
2020-11-28
Article (Journal)
Electronic Resource
English