A platform for research: civil engineering, architecture and urbanism
Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests
AbstractAn investigation of excess pore-pressure generation of a weathered granitic sand, taken from the source area of a typical landslide caused as a result of liquefaction, and a fine silica sand was conducted, in which grain crushing within the shear zone of ring-shear test specimens was examined as the key phenomenon of rapid long-runout motion of landslides. In order to investigate and explain the low average apparent-friction angle, mobilized in a liquidized landslide, speed-controlled ring-shear tests were conducted under undrained conditions on weathered granitic-sand specimens, formed under a wide range of initial void ratios. It was revealed that very small steady-state shear resistances were obtained irrespective of the initial void ratios, which can explain the low average apparent-friction angle. In addition, two series of ring-shear tests on weathered-granitic and fine-silica sands were conducted under naturally drained conditions by keeping the upper drain valve of the shear box open during the tests. The first series of tests was performed under differing total normal stresses, but at the same shear speed, and the second series was conducted at differing shear speeds, but under the same total normal stress. In order to investigate and analyze excess pore-pressure generation and dissipation within the shear zone that is associated with grain crushing, permeability analyses were conducted by passing water through the sample box of the ring-shear test apparatus before and after shearing. In addition, grain-size distribution analyses of samples taken from the shear zone after shearing were carried out. For the weathered granitic-sand samples, a significant change in bulk permeability and large amount of grain crushing were observed. In these tests on the above soil, a considerable reduction of shear resistance, which increased proportionally to the total normal stress and shear speed, were obtained. It was observed that due to grain crushing, finer grains that lowered the permeability of the soil in the shear zone, were formed. It is likely that the decrease in permeability facilitated the generation of high excess pore pressures by reducing the pore-pressure dissipation rate from the shear zone; thus, flow behaviour was exhibited even under naturally drained conditions.
Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests
AbstractAn investigation of excess pore-pressure generation of a weathered granitic sand, taken from the source area of a typical landslide caused as a result of liquefaction, and a fine silica sand was conducted, in which grain crushing within the shear zone of ring-shear test specimens was examined as the key phenomenon of rapid long-runout motion of landslides. In order to investigate and explain the low average apparent-friction angle, mobilized in a liquidized landslide, speed-controlled ring-shear tests were conducted under undrained conditions on weathered granitic-sand specimens, formed under a wide range of initial void ratios. It was revealed that very small steady-state shear resistances were obtained irrespective of the initial void ratios, which can explain the low average apparent-friction angle. In addition, two series of ring-shear tests on weathered-granitic and fine-silica sands were conducted under naturally drained conditions by keeping the upper drain valve of the shear box open during the tests. The first series of tests was performed under differing total normal stresses, but at the same shear speed, and the second series was conducted at differing shear speeds, but under the same total normal stress. In order to investigate and analyze excess pore-pressure generation and dissipation within the shear zone that is associated with grain crushing, permeability analyses were conducted by passing water through the sample box of the ring-shear test apparatus before and after shearing. In addition, grain-size distribution analyses of samples taken from the shear zone after shearing were carried out. For the weathered granitic-sand samples, a significant change in bulk permeability and large amount of grain crushing were observed. In these tests on the above soil, a considerable reduction of shear resistance, which increased proportionally to the total normal stress and shear speed, were obtained. It was observed that due to grain crushing, finer grains that lowered the permeability of the soil in the shear zone, were formed. It is likely that the decrease in permeability facilitated the generation of high excess pore pressures by reducing the pore-pressure dissipation rate from the shear zone; thus, flow behaviour was exhibited even under naturally drained conditions.
Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests
Okada, Yasuhiko (author) / Sassa, Kyoji (author) / Fukuoka, Hiroshi (author)
Engineering Geology ; 75 ; 325-343
2004-07-07
19 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2004
|British Library Online Contents | 2005
|British Library Conference Proceedings | 2000
|