A platform for research: civil engineering, architecture and urbanism
Model simulation of ultrafine particles inside a road tunnel
AbstractA monodispersive aerosol dynamic model, coupled to a 3D hydrodynamical grid model, has been used to study the dynamics of ultrafine particles inside a road tunnel in Stockholm, Sweden. The model results were compared to measured data of particle number concentrations, traffic intensity and tunnel ventilation rate. Coagulation and depositional losses to the tunnel walls were shown to be important processes during traffic peak hours, together contributing to losses of 77% of the particles smaller than 10nm and 41% of the particles of size 10–29nm. Particle growth due to water uptake or the presence of a micron-sized, resuspended particle fraction did not have any significant effect on the number of particles lost due to coagulation. Model simulation of particle number concentration response to temporal variations in traffic flow showed that constant emission factors could be used to reproduce the concentration variations of the particles larger than 29nm, while vehicle-speed-dependent factors are suggested to reproduce the variation of the smallest fractions. The emission factors for particle number concentrations estimated from the model simulation are in general higher and show a larger contribution from light-duty vehicles than what has been reported from a tunnel in California. The model study shows that combined measurements and model simulations in road tunnels can be used to improve the determinations of vehicle emission factors for ultrafine particles under realistic driving conditions.
Model simulation of ultrafine particles inside a road tunnel
AbstractA monodispersive aerosol dynamic model, coupled to a 3D hydrodynamical grid model, has been used to study the dynamics of ultrafine particles inside a road tunnel in Stockholm, Sweden. The model results were compared to measured data of particle number concentrations, traffic intensity and tunnel ventilation rate. Coagulation and depositional losses to the tunnel walls were shown to be important processes during traffic peak hours, together contributing to losses of 77% of the particles smaller than 10nm and 41% of the particles of size 10–29nm. Particle growth due to water uptake or the presence of a micron-sized, resuspended particle fraction did not have any significant effect on the number of particles lost due to coagulation. Model simulation of particle number concentration response to temporal variations in traffic flow showed that constant emission factors could be used to reproduce the concentration variations of the particles larger than 29nm, while vehicle-speed-dependent factors are suggested to reproduce the variation of the smallest fractions. The emission factors for particle number concentrations estimated from the model simulation are in general higher and show a larger contribution from light-duty vehicles than what has been reported from a tunnel in California. The model study shows that combined measurements and model simulations in road tunnels can be used to improve the determinations of vehicle emission factors for ultrafine particles under realistic driving conditions.
Model simulation of ultrafine particles inside a road tunnel
Gidhagen, L. (author) / Johansson, C. (author) / Ström, J. (author) / Kristensson, A. (author) / Swietlicki, E. (author) / Pirjola, L. (author) / Hansson, H.-C. (author)
Atmospheric Environment ; 37 ; 2023-2036
2003-02-03
14 pages
Article (Journal)
Electronic Resource
English
Elsevier | 2014
|