A platform for research: civil engineering, architecture and urbanism
Model developments of long-term aged asphalt binders
Highlights ► This study developed a series of models to simulate long-term aged asphalt binders. ► ANN models are more effective than regression models. ► And these ANN models were easily implemented in a spreadsheet. ► Aging temperature, duration and molecular sizes are the most important factors.
Abstract Artificial neural networks (ANNs) are useful in place of conventional physical models for analyzing complex relationship involving multiple variables and have been successfully used in civil engineering applications. The objective of this study was to develop a series of ANN models to simulate the long-term aging of three asphalt binders (PG 64-22, crumb rubberized asphalt modifier, PG 76-22) regarding seven aging variables such as aging temperature and duration, m-value, mass loss of pressurized aging vessel (PAV) samples, percentages of large and small molecular sizes of high pressure-gel permeation chromatographic (GPC) testing, and binder stiffness. The results indicated that ANN-based models are more effective than the regression models and can easily be implemented in a spreadsheet, thus making it easy to apply. The results also show that the aging temperature, aging duration, percentage of large and small molecular sizes, and binder stiffness are the most important factors in the developed ANN models for prediction of penetration index after a long-term aging process.
Model developments of long-term aged asphalt binders
Highlights ► This study developed a series of models to simulate long-term aged asphalt binders. ► ANN models are more effective than regression models. ► And these ANN models were easily implemented in a spreadsheet. ► Aging temperature, duration and molecular sizes are the most important factors.
Abstract Artificial neural networks (ANNs) are useful in place of conventional physical models for analyzing complex relationship involving multiple variables and have been successfully used in civil engineering applications. The objective of this study was to develop a series of ANN models to simulate the long-term aging of three asphalt binders (PG 64-22, crumb rubberized asphalt modifier, PG 76-22) regarding seven aging variables such as aging temperature and duration, m-value, mass loss of pressurized aging vessel (PAV) samples, percentages of large and small molecular sizes of high pressure-gel permeation chromatographic (GPC) testing, and binder stiffness. The results indicated that ANN-based models are more effective than the regression models and can easily be implemented in a spreadsheet, thus making it easy to apply. The results also show that the aging temperature, aging duration, percentage of large and small molecular sizes, and binder stiffness are the most important factors in the developed ANN models for prediction of penetration index after a long-term aging process.
Model developments of long-term aged asphalt binders
Xiao, Feipeng (author) / Amirkhanian, Serji N. (author) / Juang, C. Hsein (author) / Hu, Shaowei (author) / Shen, Junan (author)
Construction and Building Materials ; 37 ; 248-256
2012-07-22
9 pages
Article (Journal)
Electronic Resource
English
Model developments of long-term aged asphalt binders
British Library Online Contents | 2012
|Model developments of long-term aged asphalt binders
Online Contents | 2012
|Model developments of long-term aged asphalt binders
British Library Online Contents | 2012
|Characterization of warm mix asphalt binders containing artificially long-term aged binders
British Library Online Contents | 2009
|Characterization of warm mix asphalt binders containing artificially long-term aged binders
Online Contents | 2009
|