A platform for research: civil engineering, architecture and urbanism
Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations
Abstract This paper deals with slope reliability analysis incorporating two-dimensional spatial variation. Two methods, namely the method of autocorrelated slices and the method of interpolated autocorrelations, are proposed for this purpose. Investigations are carried out based on the limit equilibrium method of slices. First-order-reliability-method (FORM) is coupled with deterministic slope stability analysis using the constrained optimization approach. Systematic search for the probabilistic critical slip surface has been carried out in this study. It is shown that both methods work well in modeling 2-D spatial variation. The results of slope reliability analysis are validated by Monte Carlo simulations. Failure probabilities obtained by FORM agree well with simulation results. It is found that 2-D spatial variation significantly influences the reliability analysis, and that the reliability index is more sensitive to vertical autocorrelation distance than to horizontal autocorrelation distance. Based on this study, failure probability is found significantly overestimated when spatial variation is ignored. Finally, the possible use of the method of interpolated autocorrelations in a probabilistic finite element analysis is suggested.
Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations
Abstract This paper deals with slope reliability analysis incorporating two-dimensional spatial variation. Two methods, namely the method of autocorrelated slices and the method of interpolated autocorrelations, are proposed for this purpose. Investigations are carried out based on the limit equilibrium method of slices. First-order-reliability-method (FORM) is coupled with deterministic slope stability analysis using the constrained optimization approach. Systematic search for the probabilistic critical slip surface has been carried out in this study. It is shown that both methods work well in modeling 2-D spatial variation. The results of slope reliability analysis are validated by Monte Carlo simulations. Failure probabilities obtained by FORM agree well with simulation results. It is found that 2-D spatial variation significantly influences the reliability analysis, and that the reliability index is more sensitive to vertical autocorrelation distance than to horizontal autocorrelation distance. Based on this study, failure probability is found significantly overestimated when spatial variation is ignored. Finally, the possible use of the method of interpolated autocorrelations in a probabilistic finite element analysis is suggested.
Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations
Ji, J. (author) / Liao, H.J. (author) / Low, B.K. (author)
Computers and Geotechnics ; 40 ; 135-146
2011-11-01
12 pages
Article (Journal)
Electronic Resource
English
Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations
Online Contents | 2012
|TESTING FOR LOCAL SPATIAL AUTOCORRELATIONS IN THE PRESENCE OF GLOBAL AUTOCORRELATION
Online Contents | 2001
|Simplified slope reliability analysis considering spatial soil variability
British Library Online Contents | 2017
|