A platform for research: civil engineering, architecture and urbanism
Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications
AbstractA wide range of environmental particulate matter (PM) both indoor and outdoor and consisting of natural and anthropogenic PM was collected by high volume air filters, electrostatic precipitation, and thermophoretic precipitation directly onto transmission electron microscope (TEM) coated grid platforms. These collected PM have been systematically characterized by TEM, energy-dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). In the El Paso, TX, USA/Juarez, Mexico metroplex 93% of outdoor PM1 is crystalline while 40% of PM1 is carbonaceous soot (including multiwall carbon nanotubes (MWCNTs) and multiconcentric fullerenes) PM. Multiply-replicated cytotoxicity (in vitro) assays utilizing a human epithelial (lung model) cell line (A549) consistently demonstrated varying degrees of cell death for essentially all PM which was characterized as aggregates of nanoparticulates or primary nanoparticles. Cytokine release was detected for Fe2O3, chrysotile asbestos, BC, and MWCNT PM while reactive oxygen species (ROS) production has been detected for Fe2O3, asbestos, BC, and MWCNT aggregate PM as well as natural gas combustion PM.Nanoparticulate materials in the indoor and outdoor environments appear to be variously cytotoxic, especially carbonaceous nano-PM such as multiwall carbon nanotubes, black carbon, and soot nano-PM produced by natural gas combustion.
Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications
AbstractA wide range of environmental particulate matter (PM) both indoor and outdoor and consisting of natural and anthropogenic PM was collected by high volume air filters, electrostatic precipitation, and thermophoretic precipitation directly onto transmission electron microscope (TEM) coated grid platforms. These collected PM have been systematically characterized by TEM, energy-dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). In the El Paso, TX, USA/Juarez, Mexico metroplex 93% of outdoor PM1 is crystalline while 40% of PM1 is carbonaceous soot (including multiwall carbon nanotubes (MWCNTs) and multiconcentric fullerenes) PM. Multiply-replicated cytotoxicity (in vitro) assays utilizing a human epithelial (lung model) cell line (A549) consistently demonstrated varying degrees of cell death for essentially all PM which was characterized as aggregates of nanoparticulates or primary nanoparticles. Cytokine release was detected for Fe2O3, chrysotile asbestos, BC, and MWCNT PM while reactive oxygen species (ROS) production has been detected for Fe2O3, asbestos, BC, and MWCNT aggregate PM as well as natural gas combustion PM.Nanoparticulate materials in the indoor and outdoor environments appear to be variously cytotoxic, especially carbonaceous nano-PM such as multiwall carbon nanotubes, black carbon, and soot nano-PM produced by natural gas combustion.
Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications
Murr, L.E. (author) / Garza, K.M. (author)
Atmospheric Environment ; 43 ; 2683-2692
2009-03-03
10 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2005
|Trans Tech Publications | 2008
Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates
British Library Online Contents | 2008
|Gd nanoparticulates: from magnetic resonance imaging to neutron capture therapy
British Library Online Contents | 2007
|