A platform for research: civil engineering, architecture and urbanism
Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings
AbstractNonlinear static procedures (NSPs) are now standard in engineering practice to estimate seismic demands in the design and evaluation of buildings. This paper aims to investigate comparatively the bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures when they are applied to buckling-restrained braced frame (BRBF) buildings which have become a favorable lateral-force resisting system for earthquake resistant buildings. Three-, 6-, 10-, and 14-storey concentrically BRBF buildings were analyzed due to two sets of strong ground motions having 2% and 10% probability of being exceeded in 50 years. The assessment is based on comparing seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-storey drifts. The NSP estimates are compared to results from nonlinear response history analysis (NL-RHA). The response statistics presented show that the MPP procedure tends to inaccurately estimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-storey drift over all stories of studied BRBF systems.
Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings
AbstractNonlinear static procedures (NSPs) are now standard in engineering practice to estimate seismic demands in the design and evaluation of buildings. This paper aims to investigate comparatively the bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures when they are applied to buckling-restrained braced frame (BRBF) buildings which have become a favorable lateral-force resisting system for earthquake resistant buildings. Three-, 6-, 10-, and 14-storey concentrically BRBF buildings were analyzed due to two sets of strong ground motions having 2% and 10% probability of being exceeded in 50 years. The assessment is based on comparing seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-storey drifts. The NSP estimates are compared to results from nonlinear response history analysis (NL-RHA). The response statistics presented show that the MPP procedure tends to inaccurately estimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-storey drift over all stories of studied BRBF systems.
Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings
Nguyen, An Hong (author) / Chintanapakdee, Chatpan (author) / Hayashikawa, Toshiro (author)
Journal of Constructional Steel Research ; 66 ; 1118-1127
2010-03-04
10 pages
Article (Journal)
Electronic Resource
English
Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings
Online Contents | 2010
|Assessment of current nonlinear static procedures for seismic evaluation of buildings
Online Contents | 2007
|Taylor & Francis Verlag | 2022
|