A platform for research: civil engineering, architecture and urbanism
Abstract The purpose of conditioning the air in a building is to provide a safe and comfortable environment for its occupants. Satisfaction with the environment is composed of many components, the most important of which is thermal comfort. The principal environmental factors that affect human comfort are air temperature, mean radiant temperature, humidity, and air speed; virtually all heating, ventilating and air-conditioning (HVAC) systems, however, are usually controlled only by an air-temperature set-point. Significant efficiency improvements could be achieved if HVAC systems responded to comfort levels rather than air-temperature levels. The purpose of this report is to present a simplified model of thermal comfort based on the original work of Fanger, who related thermal comfort to total thermal stress on the body. The simplified solutions allow the calculation of predicted mean vote (PMV) and effective temperature which (in the comfort zone) are linear in the air temperature and mean radiant temperature, and quadratic in the dew point, and which can be calculated without any iteration. In addition to the mathematical expressions, graphical solutions are presented.
Abstract The purpose of conditioning the air in a building is to provide a safe and comfortable environment for its occupants. Satisfaction with the environment is composed of many components, the most important of which is thermal comfort. The principal environmental factors that affect human comfort are air temperature, mean radiant temperature, humidity, and air speed; virtually all heating, ventilating and air-conditioning (HVAC) systems, however, are usually controlled only by an air-temperature set-point. Significant efficiency improvements could be achieved if HVAC systems responded to comfort levels rather than air-temperature levels. The purpose of this report is to present a simplified model of thermal comfort based on the original work of Fanger, who related thermal comfort to total thermal stress on the body. The simplified solutions allow the calculation of predicted mean vote (PMV) and effective temperature which (in the comfort zone) are linear in the air temperature and mean radiant temperature, and quadratic in the dew point, and which can be calculated without any iteration. In addition to the mathematical expressions, graphical solutions are presented.
A simplified model of thermal comfort
Sherman, Max (author)
Energy and Buildings ; 8 ; 37-50
1984-01-19
14 pages
Article (Journal)
Electronic Resource
English
Simplified Models for Air Stratification and Thermal Comfort in Atria
British Library Online Contents | 1995
|Simplified Models for Air Stratification and Thermal Comfort in Atria
British Library Conference Proceedings | 1995
|Bayesian thermal comfort model
Online Contents | 2014
|